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Comparing Sharpe Ratios:  So Where are the p-values? 
 

J.D. OPDYKE* 
 

Until recently, since Jobson & Korkie (1981) derivations of the asymptotic distribution of the Sharpe ratio that are 
practically useable for generating confidence intervals or for conducting one- and two-sample hypothesis tests have 
relied on the restrictive, and now widely refuted, assumption of normally distributed returns.  This paper presents an 
easily implemented formula for the asymptotic distribution that is valid under very general conditions – stationary and 
ergodic returns – thus permitting time-varying conditional volatilities, serial correlation, and other non-iid returns 
behavior.  It is consistent with that of Christie (2005), but it is more mathematically tractable and intuitive, and simple 
enough to be used in a spreadsheet. Also generalized beyond the normality assumption is the small sample bias 
adjustment presented in Christie (2005).  A thorough simulation study examines the finite sample behavior of the derived 
one- and two-sample estimators under the realistic returns conditions of concurrent leptokurtosis, asymmetry, and 
importantly (for the two-sample estimator), strong positive correlation between funds, the effects of which have been 
overlooked in previous studies.  The two-sample statistic exhibits reasonable level control and good power under these 
real world conditions.  This makes its application to the ubiquitous Sharpe ratio rankings of mutual funds and hedge 
funds very useful, since the implicit pairwise comparisons in these orderings have little inferential value on their own.  
Using actual returns data from twenty mutual funds, the statistic yields statistically significant results for many such 
pairwise comparisons of the ranked funds.  It should be useful for other purposes as well, wherever Sharpe ratios are 
used in performance assessment. 
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One of the most widely used statistics in financial analysis is the reward-to-variability ratio, or Sharpe ratio (see 
Sharpe, 1966, 1975, and 1994).1  This simple statistic is a measure of risk-adjusted performance: it measures the average 
excess returns of a stock or fund (beyond some risk-free rate) relative to its volatility as measured by its standard 
deviation: SR = (µ – Rf) / σ.  Thus will SR provide a measure of returns per unit of volatility: SR not only will score 
higher for higher returns, but also will score higher (lower), all else equal, under less (more) volatility.2   

Debate over the years regarding the utility of SR as a metric for evaluating market performance has been extensive,3 
but in comparison, surprisingly little has been written about its statistical properties,4 especially given its ubiquitous 
usage.  The latter is the focus of this paper, which must begin with the recognition that the components of SR – both the 
mean and the standard deviation – are statistics subject to random variation.  This makes mSR , too, a statistic subject to 
random variation ( mSR  is the sample-based estimate of SR).  Yet as such, all three follow specific statistical distributions, 
and knowing the statistical distribution that SR follows will allow researchers and financial analysts to make probabilistic 
inferences about its values with specified levels of certainty.  For example, is SR = 0.5, for a certain fund over a certain 
period of time, statistically significantly different from zero?  In other words, does that 0.5 value indicate a risk-adjusted 
positive excess return with some level of confidence (say, 95%), or is it just an artifact of random variation about a true 
value of zero (or less)?  Similarly, is the SR of one fund statistically significantly larger than that of another, or is any 
observed difference just a reflection of market volatility?  This is a very important question, since many thousands of 
times every week, around the globe, the performance of funds and fund managers are ranked according to their Sharpe 
ratios.  Yet no information ever accompanies these rankings to indicate whether the observed differences are actually 
statistically significant!  Without such information, in the form of p-values and/or confidence intervals, the entire ranking 
exercise is of limited inferential value.  Yet it is exactly questions like these that can be answered with knowledge of the 
statistical distribution that mSR  follows as it is subject to random variation. 

 

* J.D. Opdyke is President, Senior Statistical Data Miner, DataMineIt, 40 Tioga Way, Commerce Center – Suite 240, Marblehead, 
MA  01945 (E-mail: JDOpdyke@DataMineIt.com).  I express thanks to Keith Ord, Hrishikesh Vinod, and Andrew Clark for useful 
comments, and sincere appreciation to Steve Christie for spotting an error in an earlier draft.

                                                 
1 Christie (2005) refers to the Sharpe ratio as “ubiquitous in the finance industry … arguably the most widely used general measure of 
fund manager performance.” (p.5).  McLeod and van Vuuren describe how it “quickly gained widespread popular acceptance and 
today enjoys almost ubiquitous implementation in the financial world” (p.1).   And Lo (2002) calls it “one of the most commonly cited 
statistics in financial analysis” (p.1).  In light of such assessments, it would appear difficult to overstate the importance of correctly 
understanding the statistical properties of the Sharpe ratio. 
 
2 Although this is not true when excess returns are negative, many argue that the interpretation of the Sharpe ratio under these 
conditions does not change: a larger Sharpe ratio still indicates better risk-adjusted performance (see Akeda, 2003, Sharpe, 1998, and 
Vinod & Morey, 2000).  Others disagree (see Scholz, 2007). 
 
3 Eling & Schuhmacher (2007) present strong new evidence, even under the highly non-normal data conditions of hedge fund returns, 
in support of the Sharpe ratio compared to other more complex risk-adjusted performance metrics, the statistical properties of most of 
which are far less well understood. 
 
4 Scherer (2004) believes this is due to “the extreme difficulty of working out the required statistics for most risk-return ratios,” yet the 
derivations presented herein are fairly straightforward. 
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This paper derives the asymptotic (large sample) distribution of mSR  under very general conditions – stationary and 
ergodic returns – thus permitting time-varying conditional volatilities, serial correlation, and otherwise non-iid returns 
behavior (i.e. returns that are not independent and identically distributed).  The derivation shows that those of both 
Mertens (2002), which is valid under iid returns, and Christie (2005), which is more broadly valid under stationary and 
ergodic returns, are, in fact, identical.  It thus generalizes the far more restrictive iid requirement of the former, while 
greatly simplifying the more complex formula of the latter, making it more mathematically tractable and intuitive, and 
far easier to calculate and implement when conducting hypothesis tests or generating corresponding confidence intervals 
(it is simple enough to be used in a spreadsheet). 

In the non-asymptotic realm, the small sample bias adjustment proposed by Christie (2005) is generalized beyond the 
restrictive and unrealistic assumption of iid normality, and used in an extensive simulation study that a) demonstrates the 
empirical level and power of the one-sample estimator of SR under leptokurtosis (“heavy-tails”) and asymmetry, which 
have been widely cited as characterizing stock market returns (see Be, 2000, Brännäs & Nordman, 2003, Harris & 
Coskun, 2001, Dillen & Stoltz, 1999, Patterson & Heravi, 2003, and Richardson & Smith, 1993); and b) demonstrates 
the empirical level and power of an analogous two-sample statistic that tests whether the SR of one stock or fund is larger 
than that of another, especially under returns with strong, positive correlation between funds.  No other easily 
implemented statistic exists, as a simple distribution-based formula rather than a complex computer program, to perform 
such a comparison under real-world financial data conditions.   

The paper concludes by applying both the one- and two-sample estimators to the actual returns data of twenty mutual 
funds.  The fund lists are ranked by mSR , as is widely done in practice, and pairwise comparisons of the funds’ Sharpe 
ratios, for all possible pairs, are made using the two-sample statistic.  Unlike some preliminary research conducted under 
more restrictive and unrealistic assumptions (i.e. iid normality of returns), these hypothesis tests yield many statistically 
significant results, indicating that, given the good level control shown in the simulation study, the two-sample statistic 
should be very useful for this purpose in practice.  It should be useful for other purposes as well, wherever Sharpe ratios 
are used for performance assessment. 

 
 

I.  The Commonly Used Sharpe Ratio 
 
Many ‘modified’ versions of the Sharpe ratio have been presented in the finance literature, but the basic Sharpe ratio 

in common usage takes one of two forms: 
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deviation of the excess returns.  This is the definition of the Sharpe ratio as presented by Jobson and Korkie (1981), 
Sharpe (1994), Memmel (2003), and others. 

An arguably more widely used version is presented in Lo (2002) and Christie (2005) as: 
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sample standard deviation of the stock returns, and fR  is the risk-free rate.  If fR is constant over the periods used to 

calculate mSR , as is often the case and assumed by this second definition of mSR , then µ̂=f fR  and, of course, 
m m=e SSR SR , because the mean of the difference is equal to the difference of the means.  Even if fR is not literally 

constant over the specified time period, its variance is so small relative to that of a typical stock or fund that its 
arithmetic mean often is treated as its constant value, a convention that is assumed throughout the remainder of this 
paper.5 

                                                 
5 Treating the risk-free rate as a constant is further justified by the fact that, even when its variance is not literally zero over the time 
period being examined, its covariance with stocks or funds will be. 
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II.  The Statistical Distribution of The Sharpe Ratio 
A.  IID Normality 
 
A quarter century ago, Jobson and Korkie (1981) presented a derivation of the asymptotic distribution of SR under the 

assumption of normal iid returns:   
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where µe is the average excess return.  Lo (2002) presented this again more recently, but because of his iid notation (2) 
and the fact that the presumption of normality is implicitly stated in a footnote, the requirement of normality is easy to 
miss.  Consequently, this result has been widely (and incorrectly) cited as being valid under iid generally (see Lee 
(2003), Getmansky et al. (2004), Pinto and Curto (2005), Hennard and Aparicio (2003), and McLeod and van Vurren 
(2004) for a few examples).6  
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B.  IID Generally 
 
Mertens (2002) correctly notes that Lo’s (2002) derivation is valid only under iid normality, and presents a derivation 

that is valid under iid generally:   
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Note that this is very straightforward: the distribution is normal, and its variance is determined by just three easily 
calculated values: the value of mSR  itself, the kurtosis of the returns,7 and the skewness of the returns.  No higher 
moments affect the asymptotic distribution of mSR .8  This result also can be derived using the similar delta method 
approach for the ratio of two random variables presented in Stuart & Ord (1994), pp. 351-352, and in Appendix A. 
  

C.  Stationarity and Ergodicity (no IID requirement) 
 
More recently, Christie (2005) went beyond the iid restriction.9  He used a generalized method of moments (GMM) 

approach – based on a single system of moment restrictions that jointly tests the restrictions – to provide a careful 

                                                 
6 In their letters to the editor of the Financial Analysts Journal, Morillo & Pohlman (2002) point out the earlier, identical result of 
Jobson & Korkie (1981), and Wolf (2003) points out that Lo’s (2002) “iid” derivation is valid only under normality.  Lo (2003) 
acknowledges both points in his response, but emphasizes the illustrative nature of his (normal) “iid” derivation while urging readers 
to instead use his more robust GMM estimator when analyzing actual financial data.  However, Lo’s (2002) GMM estimator is not a 
simple formulaic solution and requires a modestly complex computer program to implement (i.e. Newey & West’s (1987) procedure).  
Both of these shortcomings to quick, simple, and practical implementation are overcome by the one- and two-sample estimators 
derived in this paper. 
 
7 Also note that the term ( )41 4 1γ − , obtained after combining the SR2 terms in (3), may be recognized as the relative variance of the 

estimate of the standard deviation, σ̂ (see Hansen et al. (1953), p.99, 102).  
 
8 It is very important to note, however, that there appears to be growing empirical evidence for many financial instruments that the 
fourth moment of returns sometimes simply does not exist – kurtosis diverges rather than converges as sample sizes (the number of 
periods) increases (see Gençay et al., 2001).  While this may be related to the (high) frequency of the returns data examined, it is an 
important potential limitation of using (3) and the related derivations in this paper, as well as other statistical approaches, when 
making inferences about mSR . 
 
9 Bao & Ullah (2006) also recently presented a derivation of the distribution of the Sharpe ratio that does not require a presumption of 
independence, but it does require normality, so it is much less general than Christie’s (2005) derivation, and less useful in practice 
given the vast empirical evidence in the finance literature that returns are non-normal.  And as mentioned above, Lo’s (2002) GMM 
estimator, while not requiring iid returns, is not a simple formulaic solution, but rather requires a modestly complex computer program 
to implement (i.e. Newey & West’s (1987) procedure), making it less preferable to Christie’s (2005) formulaically straightforward 
estimator. 
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derivation of the asymptotic distribution of mSR  under only the restrictions of stationarity and ergodicity.  Consequently, 
his result is valid under the more realistic conditions of time-varying conditional volatilities, serial correlation, and 
otherwise non-iid returns.  He obtains the somewhat unwieldy formula for the variance of mSR  in (4) 
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The price paid for a more general result, however, appears to be a less intuitive and more difficult implementation 
compared to that of Mertens (2002).  This is especially true if one needs to construct from this a two-sample statistic to 
compare two Sharpe ratios to see if one fund’s SR is larger than that of another.  Such comparisons are made implicitly, 
many thousands of times a week, whenever mutual funds or hedge funds are ranked based on their Sharpe ratios.  
However, tests of statistical significance never accompany such rankings because of their heretofore unrealistic 
assumptions (e.g. iid normality) and lack of quick and easy implementation.  This paper provides solutions to both of 
these shortcomings – i) an easily implemented single-sample estimator valid under general conditions, and ii) a 
corresponding (easily implemented) two-sample estimator for comparing two Sharpe ratios. 

i) In Appendix B, it is shown that Christie’s (2005) derivation (4) is, in fact, identical to that of Mertens (2002) (3), 
making the far more general conditions of the former valid for the latter (5).10 
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So the distribution of mSR , under very general, “real world” financial data conditions, is simply (6) below:11 
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Of course the standard error of mSR , based on (6), is  
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and the estimated standard error is:12 
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Likewise, confidence bounds for mSR are determined with: 

                                                                                 m m( )n
± ×critSR z SE SR                                                                          (9) 

where zcrit is the critical value of the standard normal distribution corresponding to the desired level of confidence the 
financial analyst wants associated with the confidence interval (e.g. zcrit ≈ 1.645 and ±1.96 correspond to one-tailed 
(upper tail) and two-tailed 95% confidence intervals, respectively).  The easily calculated and intuitive nature of (6) 
allows us to examine how the distribution of mSR  will vary based on the distribution of the returns, as shown in Graph 1 
below (although (6) remains valid even if returns are not iid).  The Asymmetric Power Distribution (APD) of Komunjer 
(2006) is described in detail further below, and is used in Figure 1 with skewness and kurtosis parameters that reflect the 
(negatively) skewed and leptokurtotic (“heavy tailed”) characteristics of “real world” returns data.  Figure 1 makes very 

                                                 
10 As noted in Appendix B, the presumption of a constant risk-free rate, or an essentially constant risk-free rate, is required for this 
simplification.  As an empirical matter, this assumption is justified. 
 
11 In addition to being more easily calculated and understandable, (6), unlike (4), makes readily apparent the requirement of the 
existence of third and fourth moments (in addition to stationarity and ergodicity).  As mentioned above, the fourth moment does not 
appear to exist for some financial instruments (see Gençay et al., 2001, and Jondeau & Rockinger, 2003), in which case 
transformations to normality sometimes may be a viable alternative (for example, see Malevergne & Sornette, 2005). 

 
12 Common practice in the financial services sector notwithstanding, dividing by T-1, rather than T, in the standard error will provide a 
less biased, albeit still slightly biased, estimate of the population standard error (see Zar, 1999, p.39). 
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clear that even if one was to ignore the extensive empirical evidence against normality, simply assuming normality of 
returns could provide a misleading basis for making statistical inferences about mSR .13 
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Figure 1. Distribution of mSR  by Distribution of Returns, SR = 1.0, T=30 

 

ii) For comparing two Sharpe ratios, an easily implemented two-sample statistic, which is the two-sample analog to (6), 
is derived and presented below.  But first, the issue of small sample bias is addressed. 

 
D.  Small Sample Bias 
 
Unbiased estimates of SR have been derived under iid normality (see Miller & Gehr, 1978) and iid lognormality (see 

Knight and Satchell, 2005), but both are relatively unwieldy and, of course, restricted by their parametric assumptions.  
Christie (2005) takes a more general, and arguably more practical approach to small sample bias.  He begins by correctly 
pointing out that, due to division by σ, SR is convex, so its estimator will be biased due to Jensen’s inequality: 

                                                           m ( ) [ ] [ ]( ) ( )ˆ ˆ ˆ ˆ, , ,µ σ µ σ µ σ  ≥ = E SR SR E E SR                                                   (10) 
 

To obtain an estimate of the bias of mSR , Christie (2005) first obtains a second-order Taylor-series expansion of mSR  
about σ , the cause of mSR ’s convexity, and then uses a first-order Taylor-series expansion of 2σ̂  about 2σ  to obtain the 
distribution of σ̂ .  Ironically, however, after cautioning against using bias adjustments that rely on parametric 
assumptions, he uses an estimator of the variance of the sample variance, 4ˆ2σ , that only is valid under normality (see 
Kmenta (1986), p.139).  Therefore, his result below is valid only under normality (see Christie, 2005). 
 

                                                                     m ( ) ( ) 1 1ˆ ˆ, , 1
2

µ σ µ σ    = +    
E SR SR

T
                                                          (11a) 

 

It is not surprising that this resembles Lo’s (2002) asymptotic distribution of SR because he also uses the same estimate 
of the variance of 2σ̂ , namely 4ˆ2σ , which only is valid under normality.  Substituting for 4ˆ2σ  the term ( )4

4ˆ ˆµ σ− , 
which is valid asymptotically for any distribution (see Randles & Wolf (1979), pp. 73-74), yields the bias adjustment of 
(11b) below. 
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Not surprisingly, this resembles the asymptotic distribution in (6), which correctly and more generally takes into account 
the kurtosis of the returns.  This bias adjustment – dividing mSR  by the coefficient on ( ),µ σSR  in (12) – is used in the 

simulation study below to scrutinize the actual small sample behavior of mSR , especially under leptokurtotic and/or 
skewed data.  Also examined in the simulation study is the two-sample analog to (6), which can be used to test the 
hypothesis that the SR of one fund is larger than that of another: 0 :  vs. :≤ >a b a bH SR SR Ha SR SR  (of course, it also 
can be used in two-tailed tests of whether two SR’s are equal).  The two-sample estimator is presented below. 

                                                 
13 The fact that the distribution of the Sharpe ratio (6) takes into account higher moments of the returns distribution (i.e. skewness and 
kurtosis) at least partially mitigates criticism of the Sharpe ratio for not explicitly incorporating such moments into its actual formula 
(which, of course, is based only on the mean and the standard deviation).  And as previously noted, Eling & Schuhmacher (2007) 
present strong new evidence, even under the “difficult” data conditions of highly non-normal hedge fund returns, that the Sharpe ratio 
performs virtually identically to far more complex metrics that attempt, with mixed success, to explicitly incorporate higher moments. 
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III.  A Two-Sample Statistic for Comparing Sharpe Ratios 
 
One approach to testing Ho: SRa ≤ SRb v. Ha: SRa > SRb is to derive the distribution of 
m m m( ) ( )= − − −diff a b a bSR SR SR SR SR .14  Because m aSR  and mbSR  are asymptotically unbiased normally distributed random 

variables, based on the Central Limit Theorem (for dependent variables – see, for example, White, 2001, Ch.5) their 
linear combination will be asymptotically unbiased and normally distributed.  The expected value is zero, and the 
variance, of course, is: 
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The first two terms are from (6), and the covariance term is derived in Appendix C, so that, letting = ata R  and = btb R ,  
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where ( )( ) ( )( )2 2
2 ,2µ  = − −  a b E a E a b E b  is the joint second central moment of the joint distribution of a and b, and  

( )( ) ( )( )2
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 and ( )( ) ( )( )2
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  (unbiased estimators for these three terms 

are provided in Appendix C).  Note that when 2 2
, 2 ,20,  ρ µ σ σ= =a b a b a b , 1 ,2 0a bµ = , and 1 ,2 0b aµ = , so the entire 

covariance term disappears, as it should. 
Following (12), we can see that (13) is the two-sample analog to (6), and since it also was derived using the delta 

method, which for the one-sample estimator (6) was shown to be identical to the more generally valid GMM method, we 
suspect the more general conditions of stationarity and ergodicity are the only requirements for (13) as well.  Proving this 
is the topic of continuing research.   

(13) is very easily implemented as a test of 0 :  vs. :≤ >a b a bH SR SR Ha SR SR  – so easy, in fact, that it can be 
implemented in a spreadsheet (one that implements the hypothesis tests and confidence intervals corresponding to both 
(6) and (13) is available for download at the author’s website at www.DataMineIt.com).  And under iid normality, 

3
3 0µ σ = , 1,2 0µ = , 4

4 3µ σ = , and ( )2 2 2
2 ,2 ,1 2µ ρ σ σ= +a b a b a b  (see Stuart & Ord, 1994, p.105): inserting these values 

into (13), as shown in Appendix D, yields Memmel’s (2003) correction of Jobson and Korkie’s (1981) two-sample 
statistic, thus providing further independent validation of these derivations.  The distribution of m diffSR  is graphed in 
Figure 2 below for illustrative purposes.  Assuming zero correlation between the two returns, we can see in Figure 2a 
that the variance of (13) is twice as large, all else equal, as that of (6) in Figure 1. 

                                                 
14 Of course, this is not the only approach.  To test this two-sample hypothesis, Christie (2005) jointly tests, consistent with his 
asymptotic derivation, moment restrictions within a single system of moment restrictions.  However, the benefits of this paper’s 
approach over Christie’s (2005) GMM approach are two-fold: i) implementation of the former does not require custom coding a 
moderately complex statistical software program (rather, it can be implemented in a spreadsheet), and ii) it provides confidence 
intervals as well as p-values, while Christie’s (2005) approach provides only p-values.  While Vinod & Morey’s (2000) bootstrap 
approach does not require derivation of the distribution of the difference between Sharpe ratios, it does require a computationally 
intensive computer program (and a very computationally intensive program for their double bootstrap method), and may be less 
powerful than the asymptotic approach taken in this paper.  In addition, it should be noted that the variance estimates produced by 
many bootstrap procedures have been shown in the literature to be notoriously poor under asymmetric heavy tails, and even under 
symmetric heavy tails (see Rocke & Downs, 1981, Gosh et al., 1984, and Salibián-Barrera, 1998), and these are the defining 
characteristics of financial market returns.  Consequently, in the absence of a rigorous, validating bootstrap simulation study providing 
results based on simulated returns of known distributions rather than actual returns data, such bootstrap variance estimators of Sharpe 
ratios should be interpreted with caution.   
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Figure 2a:  m diffSR by Distribution of Returns, 0ρ =         Figure 2b:  m diffSR Under “Real World” APD, by ρ 
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However, the variance of (13) decreases markedly as correlation between the funds increases, as shown in Figure 2b 

for APD with “real world” values for its skewness and kurtosis parameters.15  This causes a dramatic increase in the 
power of (13), which is a major finding of both the simulation results presented below, and the empirical results from the 
analysis of actual mutual fund returns in Section V, so its presentation analytically in Figure 2b is important and useful.  
The standard deviation corresponding to each between-fund correlation, and their decreases relative to that under no 
correlation – σρ=0.00 – are shown as line labels, in order, in Figure 2b.16 

 
 

IV.  Simulation Study 
 
A.  Simulating Returns with Komunjer’s (2006) Asymmetric Power Distribution 
 
The non-asymptotic properties of (6) and (13) are examined below under a wide range of sample sizes, mean-variance 

configurations, between-fund correlations, and distributions.  Regarding distributions, notwithstanding the extensive 
empirical evidence in the literature of the non-normality, (negative) skewness, and leptokurtosis of financial returns, 
examining (6) and (13) under normality provides an important baseline.  And while extensive study has been made of 
returns under a Laplacian (double exponential) framework (see Cajigas & Urga, 2005, Kotz, Kozubowski & Podgorski, 
2001, Kozubowski & Podgorski, 2001, and Linden, 2001), including, more recently, the asymmetric Laplacian 
distribution, there exists empirical evidence that the kurtosis of returns lies in the “in-between” range between that of the 
normal and Laplacian distributions (see Haas et al., 2005, and Komunjer, 2006).  So to robustly test (6) and (13) under 
the widest range of possible conditions, including as a subset of distributions that reflect the characteristics of “real 
world” financial returns, we turn to a very flexible and relevant distribution – Komunjer’s (2006) Asymmetric Power 
Distribution (APD).  APD nests both the Laplace and normal distributions, as well as asymmetric versions of each (the 
asymmetric Laplace of Kozubowski & Podgorski, 1999, and the two-piece normal (see Johnson, Kotz & Balakrishnan, 
1994, vol. 1 p.173 and vol. 2 p.190)17), and every combination of skewness and kurtosis “in-between.”18  One parameter 
of APD, α, controls skewness: 0 < α < 1, with symmetry at α = 0.5 (when it is equivalent to the Generalized Power 
Distribution (GPD), which nests the normal and Laplace distributions).  The other parameter, λ>0, controls kurtosis, such 
that when α = 0.5, λ = ∞ → the uniform distribution, λ = 1.0 → the Laplace distribution (with variance = 2.0), and λ = 
2.0 → the normal distribution (with variance = 0.5).  Thus does APD allow simultaneous control over skewness and 
kurtosis. 

                                                 
15 The joint moment terms of (13), for ρ ≠ 0, are very accurately estimated in simulations of N=100,000. 
 
16 Although one might be tempted to say that the distribution of m diffSR under a naïve assumption of normality with no between-fund 
correlation (Figure 2a) is virtually identical to that under more realistic distributional conditions and strong positive correlation (Figure 
2b), this is only true asymptotically.  In practice, using actual finite data samples, these two distributions are very different, and the 
simplifying but naïve (and incorrect) assumption of normality can cause very misleading inferences. 

 
17 This is not to be confused with the skew-normal distribution of Azzalini (1985), which is very similar. 
 
18 Similar densities recently have been developed, such as the asymmetric exponential power (AEP) distribution of Ayebo & 
Kozubowski (2003), and the Gauss-Laplace Mixture (GLaM) and Gauss-Laplace Sum (GLaS) distributions used by Haas et al (2005). 
 

σρ=0.00 = 0.521 

σρ=0.25 = 0.465, -10.7% 

σρ=0.50 = 0.398, -23.5% 

σρ=0.75 = 0.327, -37.1% 



 

 

Preprint - ©2005 J.D. OPDYKE, DataMineIt              Forthcoming – Journal of Asset Management, 8(5), Dec 2007                               8 

The APD for many of the combinations of α and λ used in the simulations is shown in Figure 3E in Appendix E.  
Although positive skewness (APD with α < 0.5) is not shown to maintain graphical clarity, it is simulated in the study to 
test the robustness of the estimators, even though returns typically are negatively skewed (i.e., have a longer left tail – 
see Komunjer, 2006, Cajigas & Urga, 2005, and Cappiello et al., 2003 for just a few examples).  Sometimes, however, 
they are positively skewed (see Komunjer, 2006, and for the case of bonds, Cappiello et al., 2003). 

In addition to using “evenly spaced” and sometimes extreme parameter values for APD to test the full range of 
behavior of (6) and (13), a set of simulations is conducted using APD parameter values that reflect the (negative) 
skewness and leptokurtosis of actual “real world” financial returns.  These are α = 0.7 and λ = 1.35, which yield 
skewness and kurtosis coefficients of  η3 = -1.882 and η4 = 5.191, respectively (see Table E1 in Appendix E for APD 
skewness and kurtosis corresponding to the values of α and λ used in the simulations).  This distribution (Figure 3) is at 
least as “extreme,” i.e. at least as skewed and leptokurtotic, as those of typical financial returns.19  For example, this 
leptokurtosis lies in the middle of the ranges of those reported by Haas et al. (2005), Cajigas & Urga (2005), and 
Cappiello et al. (2003), and the skewness is far more extreme than those reported in the latter two papers.   And 
Komunjer’s (2006) maximum likelihood estimates for the values of α and λ range from 0.462 to 0.586, and 1.21 to 1.55, 
respectively.  So the “real world” simulations reflected by α = 0.7 and λ = 1.35 provide a reasonable test of the 
robustness of (6) and (13) as they would be used in practice on actual returns data. 
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Figure 3: Standardized Asymmetric Power Distribution  

with Parameter Values reflecting “Real World” Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 
 
 

In addition to this full range of distributions, the simulation study examines two-sided, as well as one-sided (Ho: SRa ≤ 
c vs. Ha: SRa > c, and Ho: SRdiff  ≤  0 vs. Ha: SRdiff > 0) coverage.  It uses sample sizes of # periods = T = 15, 30, 50, 100, 
and 300; mean-variance configurations (with unit variance) yielding  SR values of SRa = 0 & SRb = 0.0, 0.1, 0.2, & 0.5; 
SRa = 0.2 & SRb = 0.2, 0.4; SRa = 1.0 & SRb = 1.0, 1.5; and SRa = 3.0 & SRb = 3.0, 3.5; (only SRa is used for the one-
sample (6) results20); and correlations between the two series of returns of ,ρa b = 0.0, ,ρa b ≈ 0.25, ,ρa b ≈ 0.50, and ,ρa b ≈ 
0.75, making the total number of scenarios 25 x 5 x 10 x 4 = 5,000; with the “real world” (Figure 3) returns simulations, 
the total is 5,200.  Dependence was induced either directly in the distributional simulations, or via Gaussian copulae, so 
for any simulations but the normal, Pearson’s linear correlation coefficient is approximate (but almost always within 
±0.01) because the non-linear transformations required to simulate these distributions cannot preserve the linear 
correlation function21 (even though rank correlations, like Spearman’s rho and Kendall’s tau, are exactly preserved).  The 
point estimates of SRdiff  used the bias corrected versions of each SR, but the non-corrected point estimates were used 
when calculating the variances of both (6) and (13).  The estimator used for skewness η3 = 3

3µ σ is √b1 (14) (see Zar, 

                                                 
19 Graphically, Figure 4 is very similar to the empirically estimated skew-normal density used by Vinod (2005) (p.854) (Vinod used 
Azzalini, 1985) and has similar coefficients of skewness and kurtosis.  APD, however, is not only more flexible, since it nests a 
version of the skew normal, but also appears more appropriate from an empirical perspective, since Komunjer’s (2006) hypothesis 
tests reject both the symmetric and asymmetric versions of the normal distribution using actual financial returns data.  So APD would 
appear to be the better choice. 
 
20 For the one-sample power results, i.e. when SRa ≠ c, SRa = 0.3, 0.4 also are included. 
 
21 While a Cholesky decomposition will exactly preserve the linear correlations, it typically will not preserve the distributions of the 
returns. 
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1999, p.71, and Stuart & Ord, 1994, p.440).  Only for the simulations, to increase numerical stability and precision, the 
biased estimators of (g2 + 3) (15) (see Zar, 1999, p.68, and Stuart & Ord, 1994, pp.108-109) and 2,2m  (16) (see Rose & 

Smith, 2002, p.261) were used to estimate kurtosis η4 = 4
4µ σ and the second joint central moment, 2,2µ , respectively.22  

However, for analyzing actual mutual fund data in Section V, the less biased b2 (17) (see Zar, 1999, p. 71, and Stuart & 
Ord, 1994, p.452) and unbiased 2,2h  (see Appendix C, Halmös, 1946, and Rose & Smith, 2002, pp.253-260), 
respectively, are used. 
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B.  Results 
 
B.1  One-Sample Statistic: Level Control 
 
For the one-sample statistic, it should be emphasized that in this setting, the null hypothesis of interest is whether the 

risk-adjusted performance reflects positive excess returns with statistical significance – i.e., Ho: SR ≤ 0 vs. Ha: SR > 0.  
In all the results from this simulation study, under all distributional conditions, convergence of (6) to the nominal level of 
α = 0.05 (not to be confused with APD-α) under these hypotheses is virtually immediate – i.e. it occurs even for small 
samples.23  However, to fully put (6) through its paces and obtain a thorough understanding of its nonasymptotic 
behavior under all conditions, we also test Ho SR ≤ c vs. Ha: SR > c where c > 0.   

Under the “real-world” returns conditions simulated by APD-α = 0.7 and APD-λ = 1.35 (yielding skewness and 
kurtosis coefficients of  η3 = -1.882 and η4 = 5.191, respectively), generally quick convergence of (6) to α = 0.05 is 
shown in Table I and Figure 4 below for different values of SR = c (two-tailed convergence is very similar).  While still 
fast for larger values of SR, convergence is even faster as SR = c approaches zero (for SR = 0, µ = 0 and σ = 1.0). 

 
 
 
 
 

                                                 
22 Using biased but more efficient estimators for simulations is common statistical practice. 
 
23 Complete simulation results of the 5,200 scenarios examined, for both one- and two-sided tests, are available from the author upon 
request. 
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Figure 4. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SR ≤ c), Bias Corrected, by SR = c by T, 
under “Real World”  Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 

 
 
Table I:  # of Simulations of mSR  Beyond the Upper 95% Confidence Interval of (6),  

       APD (α = 0.7 & λ = 1.35, η3=-1.882, η4=5.191) by Sample Size by SR = c (#Simulations = N = 10,000) 
 Ho: SR ≤ 0 (µ = 0, σ = 1.0) Ho: SR ≤ 1 (µ = 1, σ = 1.0) 
T No adj. Bias adj. No adj. Bias adj. 
15 651 579 1,107 935 
30 535 501 892 786 
50 500 486 821 724 
100 509 491 712 644 
300 512 508 

 

580 540 
 
 
 
Under all other skewness and kurtosis combinations, we can see generally good (quick) convergence, except under the 

most extreme conditions, where convergence is slowed by the following factors, in the approximate order of the 
magnitude of the slowing effect: 

 
 

1) size of SR = c: the larger the value of SR = c, the slower the convergence to α 
2) skewness: usually, the more skewed the returns, the slower the convergence to α 
3) kurtosis: usually, the more leptokurtotic the returns, the slower the convergence to α 
4) bias correction & 1-sided vs. 2-sided coverage: 1-sided (upper-tail) coverage typically converges faster with bias 

correction, but 2-sided coverage typically converges faster without bias correction 
 
 
As expected from (6), the slowest convergence occurs under, concurrently, large values of SR = c, extreme positive 
skewness (as high as η3 = 2.23), and extreme leptokurtosis (as high as η4 = 6.65), as shown in Figures 5a & 5b below 
(convergence patterns for two-tailed coverage are similar).  Also as expected from (6), all else equal, convergence 
improves noticeably if extreme positive skewness is replaced with extreme negative skewness (see Figures 5c & 5d), 
even for two-tailed coverage.  Mathematically, this is due to the SR*skewness term in (6), and is important to note since 
returns typically are negatively skewed, albeit at the less extreme values shown in Figure 4. 
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Figure 5a:  Bias-Corrected, Extreme Positive Skewness Figure 5b:  No Correction, Extreme Positive Skewness 
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Figure 5c:  Bias-Corrected, Extreme Negative Skewness Figure 5d:  No Correction, Extreme Negative Skewness 
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Figure 5. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SR ≤ 3.0), by Bias-Correction v. No Correction by 
Extreme Positive v. Extreme Negative Skewness (APD-α = 0.1/0.9) by λ by T, under large SR (= c = 3.0) 

 
 
 
B.2  One-Sample Statistic: Bias Correction 
 
As expected, correcting for bias in the estimation of SR has noticeable, but not dramatic, effects on convergence to the 

nominal level when sample sizes are small.  The largest effects can be seen under the “extreme” returns conditions 
shown in Figures 5a & 5b.  Under the “real-world” returns conditions simulated by APD-α = 0.7 and APD-λ = 1.35, we 
see more modest improvement in convergence when using bias-corrected estimates (see Figure 6 below).  For two-tailed 
coverage, the effects typically appear to be smaller than shown in Figure 7.  Note again that convergence under Ho: SR ≤ 
0.0 is virtually perfect – i.e. virtually equal to α for even very small samples. 
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Figure 6a:  Bias-Corrected     Figure 6b:  No Bias Correction 
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Figure 6. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SR ≤ c), by Bias-Correction v. No Correction by SR = c 

by T, under “Real World”  Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 
 
 
 

B.3  One-Sample Statistic: Power 
 
To reemphasize, for the one-sample statistic, the null hypothesis of interest is whether the risk-adjusted performance 

reflects positive excess returns with statistical significance – i.e., Ho SR ≤ c vs. Ha: SR > c when c = 0.  For c = 0, Figure 
7 below shows generally modest power for this test under the “real world” conditions of APD-α = 0.7 and APD-λ = 1.35.  
Under other combinations of skewness and kurtosis, for both one- and two-sided tests of c = 0, positive skewness yields 
more power than symmetry, which yields more power than negative skewness.  And leptokurtosis yields slightly more 
power than mesokurtosis under positive skewness, but slightly less power under negative skewness.  The one-sided test 
always is noticeably, but not dramatically, more powerful than the two-sided test, with the greatest differences occurring 
under negative skewness.  Bias correction, for both one- and two-sided tests, have very little affect on power.   
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Figure 7. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SR ≤ 0), Bias Corrected, by SR by T,  
 under “Real World” Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 

 
 
For c > 0, Figure 8a below shows generally modest power for this test under the “real world” conditions of APD-α = 

0.7 and APD-λ = 1.35.  Figure 8b shows that the relative size of the difference between c and SR matters: power to detect 
a difference is greater for c = 0.0 & SR = 0.5 than it is for c = 1.0 & SR = 1.5 than it is for c  
 = 3.0 & SR = 3.5, all else equal, even though the absolute difference is the same.  This would appear to be due to the 
increased variance of (6), all else equal, when the values of SR are larger, and with a larger variance, power decreases.   
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Figure 8a:  Power for c > 0     Figure 8b:  Relative vs. Absolute Difference 
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Figure 8. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SR ≤ c), Bias Corrected, by SR by T,  
 under “Real World”  Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 

 
 
 
 
Under other combinations of skewness and kurtosis, for both one- and two-sided tests of c > 0, positive skewness 

generally yields more power than symmetry, which generally yields more power than negative skewness.  For smaller 
values of c and SR (c = 0.2, SR = 0.4), leptokurtosis yields slightly more power than mesokurtosis under positive 
skewness, but slightly less power under negative skewness; for larger values (c = 1.0, SR = 1.5; and c = 3.0, SR = 3.5), 
leptokurtosis always yields less power.  The one-sided test always was noticeably more powerful than the two-sided test.  
Bias correction, for both one- and two-sided tests, had little affect on power, except under concurrent small samples, 
positive skewness, and moderately sized c and SR (c = 1.0, SR = 1.5), where it decreased power noticeably.   

 
 
 
B.4  Two-Sample Statistic: Level Control 
 
Under the “real-world” returns conditions simulated by APD-α = 0.7 and APD-λ = 1.35, (13) exhibits excellent 

convergence to the nominal level of α = 0.05 (see Figure 9).  In fact, under strong positive correlation between the two 
returns (see Figure 9a), which is the rule rather than the exception when making apples-to-apples Sharpe ratio 
comparisons of similarly categorized funds, (13) is actually conservative, never notably violating the nominal level.  
Only under small samples, larger values of SRa = SRb, and no or low correlation between the two returns does (13) 
exhibit slightly inflated levels (see Figures 9c & 9d).  Similar results hold for two-sided tests, except under large values 
of SRa = SRb (e.g. SRa = SRb = 3.0) when convergence is noticeably slower.  However, this is only true for low or no 
correlation between the two funds: this level inflation disappears almost entirely for two-sided tests when the two series 
of returns are strongly positively correlated, as is typically the case in practice when comparing Sharpe ratios. 
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Figure 9a:  Correlation  ρ = 0.75    Figure 9b:  Correlation  ρ = 0.50 
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Figure 9c:  Correlation  ρ = 0.25    Figure 9d:  Correlation  ρ = 0.00 
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Figure 9. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SRdiff ≤ 0), Bias Corrected, by SRa=SRb  by ρ by T,  
under “Real World”  Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 

 
 
 
 
Under other combinations of skewness and kurtosis in simulated returns, (13) exhibits generally quick convergence to 

the nominal level of α = 0.05, except under the most extreme conditions: concurrently large values of SRa = SRb (= 3.0), 
extreme leptokurtosis, extreme (positive) skewness, and zero correlation between the two series of returns (see Figure 
10a).  All else equal, (13) achieves slightly quicker convergence under extreme negative skewness.  But even under 
extreme positive skewness, this level inflation, all else equal, largely evaporates under the more realistic presumption of 
strong positive correlation between the two returns (see Figure 10b).  For two-sided tests, similar patterns of convergence 
hold for all but large values of SRa = SRb (= 3.0), when convergence is noticeably slower under no or low correlation.  
However, under strong positive correlation between funds, convergence is similar to one-sided tests. 
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Figure 10a:  SRa = SRb = 3.0, Correlation  ρ = 0.00 Figure 10b:  SRa = SRb = 3.0, Correlation  ρ = 0.75 
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Figure 10. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SRdiff ≤ 0), Bias-Corrected, by ρ by λ by T   
under Large SRa = SRb (= 3.0) and “Extreme” Positive Skewness (APD with α = 0.1, so largest  η3 = 2.23) 

 
 
 
B.5  Two-Sample Statistic: Bias Correction 
 
As expected, bias correction affects results minimally for the two-sample statistic.  All two-sample results use bias-

corrected point estimates for SRa and SRb.  As with simulation results for the one-sample statistic, uncorrected estimates 
are used when calculating variances. 

 
 
 
B.6  Two-Sample Statistic: Power 
 
The major finding related to the power of the two-sample statistic (13) is that strong positive correlation between the 

two series of returns increases power dramatically, under virtually all conditions.  An example is shown in Figure 11 
under the “real-world” returns conditions simulated by APD-α = 0.7 and APD-λ = 1.35.  This finding is important for 
two reasons:  first, it has not been documented adequately in previous research.  The only previous study of a two-sample 
estimator that explicitly examined the effects of correlation between the two returns is Jobson & Korkie (1981).  This 
study only examined between-fund correlations as high as 0.50 (under iid normality), for which it reported only modest 
power.  Yet we can see from the results below that power increases appear to be nonlinear in increases in (positive) 
correlation: increasing correlation from 0.50 to 0.75 typically increases power far more than increasing it from 0.00 to 
0.25, or even from 0.25 to 0.50 (this also can be seen in Figure 2b).  This relates to the second and more important point, 
which is that, as an empirical matter, correlations of 0.75 and above are the rule rather than the exception for most 
Sharpe ratio comparisons in practice.  Day in and day out, most financial analysts are making apples-to-apples 
comparisons of similarly categorized funds, such as comparisons of competing large growth mutual funds.  Not 
surprisingly, similar types of funds are almost always very strongly positively correlated with each other.  Pairwise 
correlations above 0.9 for such funds are not uncommon (as seen in Section V below).  Therefore, as it would be used in 
practice, the two-sample estimator derived in this paper (13) not only is easily calculated and implemented, but also has 
good power (see Figure 11), contrary to the preliminary results of some earlier research.   
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Figure 11a:  Power – SRa=0.0, SRb=0.1 Figure 11b:  Power – SRa=0.0, SRb=0.2 
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Figure 11c:  Power – SRa=0.0, SRb=0.5 Figure 11d:  Power – SRa=0.2, SRb=0.4 
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Figure 11e:  Power – SRa=1.0, SRb=1.5 Figure 11f:  Power – SRa=3.0, SRb=3.5 
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Figure 11. Rejection Rate (N=10,000) of One-Tailed Test (Ho: SRdiff ≤ 0), Bias Corrected, by SRa & SRb by ρ by T, 
under “Real World”  Simulated Returns (APD with α = 0.7, λ = 1.35, so η3 = -1.882 and η4 = 5.191) 

 
 
 



 

 

Preprint - ©2005 J.D. OPDYKE, DataMineIt              Forthcoming – Journal of Asset Management, 8(5), Dec 2007 17 

Some additional findings for the empirical power of (13), which also are valid for two-tailed coverage, include: 

1) all else equal, typically greater power when both returns are positively skewed, as opposed to negatively skewed to the 
same degree (see Figures 12a & 12b vs. Figures 12c & 12d).    This is consistent with the formula of (13), since 
negative skewness, all else equal, will increase the variance, and consequently decrease power.  Evidently, the 
skewness terms in (13) typically will dominate the opposite-signed “bivariate” skewness terms in the covariance term 
of (13). 

2) all else equal, typically less power under larger kurtosis when the SRs of both returns are large, especially under 
 strong positive correlation between the two returns (see Figures 12a & 12c vs. Figures 12b & 12d).  This is 
 consistent with the formula of (13), since larger kurtosis will increase the variance, and consequently decrease 
 power.  However, since skewness is not independent of kurtosis (even with distinct skewness and kurtosis 
 parameters in APD), positive skewness sometimes can cause slightly greater power under lepto- vs. mesokurtosis, 
 which occurs in this study at times when values of SR are smaller. 

3) The relative size, not just the absolute size, of the difference between the two SRs affects power.  For example, 
 power to detect a difference is greater for SRa = 0.0 & SRb = 0.5 than it is for SRa = 1.0 & SRb = 1.5 than it is for SRa  
 = 3.0 & SRb = 3.5, all else equal, even though the absolute difference is the same (see Figures 11c, 11e, and 11f).  This 
would appear to be due to the increased variance of (13), all else equal, when the values of SR are larger.  And with a 
larger variance, power decreases. 
 
 
Figure 12a: Extreme Pos. Skew, Leptokurtosis (Laplacian)    Figure 12b: Extreme Pos. Skew, Mesokurtosis (Normal) 

  (α = 0.1 and λ = 1.0)                  (α = 0.1 and λ = 2.0) 
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Figure 12c: Extreme Neg. Skew, Leptokurtosis (Laplacian)    Figure 12d: Extreme Neg. Skew, Mesokurtosis (Normal) 
  (α = 0.9 and λ = 1.0)     (α = 0.9 and λ = 2.0) 
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Figure 12: Rejection Rates (N=10,000) of One-Tailed Test (Ho: SRdiff ≤ 0), SRa=3.0 & SRb=3.5, by α by λ by ρ by T 
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B.7 Results Summary 
 

Table II:  Summary of Simulation Study Results 
 

Level / Power One-sample Estimator (6) 
(Ho: SR ≤ c, Ha: SR > c) 

Two-sample Estimator (13) 
(Ho: SRdiff ≤ 0, Ha: SRdiff > 0) 

Level Control (Type I error) For c = 0, excellent 
For c > 0, generally acceptable 

For ρ ≥ 0.75, excellent 
otherwise, generally acceptable 

Power (1 – Type II error) For c = 0, modest 
For c > 0, fairly low 

For ρ ≥ 0.75, good, and excellent as ρ → 1.0 
otherwise, fairly low 

 
 

V.  Sharpe Ratio Comparisons of Actual Mutual Fund Returns 
 
The practical purpose for deriving the estimators (6) and (13) is to test, under very general, real-world conditions, the 

hypotheses a) that a Sharpe ratio is larger than zero – i.e. that the market behavior of the security, when adjusted for risk, 
reflects positive excess returns – and b) that the Sharpe ratio of one fund is larger than that of another.  The latter 
hypothesis is posed implicitly, thousands of times daily, whenever mutual funds are ranked according to their Sharpe 
ratios.  However, the implicit pairwise comparisons on these lists24 never are accompanied by confidence intervals or p-
values indicating whether the larger SR is actually larger with statistical significance, rather than simply as an artifact of 
random chance (i.e. due solely to the volatility of returns data).  To be able to say, “Fund Y’s Sharpe ratio is larger than 
that of Fund X, with over 95% confidence.”  would be valuable for a wide variety of purposes: indeed, wherever Sharpe 
ratios are used to assess and compare risk-adjusted performance.  Thus, (6) and (13) are applied below to the actual 
returns data of twenty mutual funds: the top 20 large growth mutual funds by net assets as of 09/06/06 as obtained from 
http://finance.yahoo.com.  Weekly returns, calculated from opening price to closing price,25 were obtained for the three 
year period from the week of 12/24/03 to that of 12/20/06.  The risk free rate used is the 90-day U.S. treasury bill 
(nominal) (series TCMNOMM3) downloaded from the Federal Reserve Board website at 
http://www.federalreserve.gov/releases/h15/data.htm.  The arithmetic mean was used to enforce the constant risk-free 
rate assumption.26  All the returns data and a flexible, fully parameterized SAS® program implementing these results can 
be downloaded from the author’s website at www.DataMineIt.com. 

The results (see Tables III, IV and V) show the major finding is that which we draw from the simulation study: strong 
positive correlation between funds appears to dramatically increase what might otherwise be lackluster power.  This can 
be inferred from two results: first, between-funds correlations shown in the funds’ correlation matrix (Table V) roughly 
match the corresponding matrix of two-sample p-values a la (13) (Table IV), with higher correlations generally matching 
more significant (smaller) p-values.  Secondly, the Sharpe ratios of individual funds whose performance is in the top of 
their class do not achieve statistical significance a la (6) for the one-sided test of positive excess returns (i.e. Ho: SR ≤ 0 
vs. Ha: SR > 0), at least at the α = 0.05 level (two are significant at α = 0.10 – see Table III).  However, when the Sharpe 
ratios of the top four or five funds are compared a la (13) to those of their competitors, most of whom have Sharpe ratios 
well above zero, the top performers are better, with statistical significance, than about half of their competitors at α = 
0.05.  This is due, of course, to the strong positive correlation between these funds and their competitors (almost four 
fifths – 149 of 190 between-fund correlations – exceed ρ ≥ 0.9).  Mathematically, this strong positive correlation 
increases the covariance term in (13) which, when subtracted from the overall variance, decreases it notably, thus 
increasing power.  It is the apparent magnitude of this effect, the fact that it has been missed in earlier research, and the 
fact that the vast majority of Sharpe ratio comparisons in practice will involve funds that are strongly, positively 
correlated with each other, that makes it a very noteworthy finding.27 

                                                 
24 In situations where many related hypothesis tests are being conducted and the cost of type I error (false positives) is high (e.g. 
genome research), multiple comparisons procedures often are used to control the family-wise error rate (FWE) or the false discovery 
rate (FDR) rather than the pairwise error rate (i.e., α).  Although the objective here as shown in Table IV is different – only to examine 
specific columns of interest individually – such procedures could be very useful in this setting if the hypotheses being examined do 
involve sizeable numbers of multiple comparisons.  See J.D. Storey (2002, 2003, 2004, 2007) and J. Hsu (1996) for details. 
 
25 Kelly (2007) relies on the Sharpe ratio, and the estimators derived herein ((6) and (13)), to test whether open-to-close ETF returns 
are different from close-to-open (after hours trading) ETF returns.  He finds large differences with strong statistical significance. 
  
26 Identical results were obtained when the variable risk-free rate was incorporated into the returns themselves, confirming that, as an 
empirical matter, the simplifying assumption of a constant risk-free rate is acceptable for practical usage. 

 
27 This finding is similar to and consistent with that of Pastor & Stambaugh (2003) who showed that the use of returns of seemingly 
unrelated assets, which often are correlated with the particular fund being examined, can dramatically increase the precision with 
which one can estimate the SR of that particular fund, and that the estimate of SR can differ dramatically as a result.   
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VI.  Conclusions 

 
The presumption of normal stock returns has been widely refuted in the empirical finance literature.  Yet until 

recently, since Jobson & Korkie (1981) the only formulaic derivation of the asymptotic distribution of the Sharpe ratio 
that was easily used for generating confidence intervals or for conducting hypothesis tests relied on this restrictive and 
incorrect distributional assumption.  This study simplifies a very recent and somewhat complex derivation to a much 
simpler, more easily implemented, and more readily understood result, but one that still is valid under the very general 
conditions of Christie’s (2005) more complex estimator – namely, stationary and ergodic returns.  Thus is the one-
sample estimator presented here valid under realistic financial returns conditions that include serial correlation, time-
varying conditional volatilities, and other non-iid behavior, along with negative skewness and leptokurtosis.  Also 
derived is an analogous two-sample statistic for comparing two Sharpe ratios, and both estimators are tested in an 
extensive simulation study.  Under real world conditions, both estimators, when used with a simple and generally valid 
bias-correction presented here, demonstrate good level control.  Power of the one-sample estimator appears to be less 
impressive than that of the two-sample estimator because strong positive correlation between funds dramatically 
increases the power of the latter.  This finding is notable for several reasons: a) it was missed in previous research on 
two-sample estimators for comparing Sharpe ratios, in part because the other estimators (Christie, 2005, and Vinod & 
Morey, 2000) are not based on a straightforward formula from a distributional derivation; b) the size of the effect is 
dramatic as between-fund correlation increases above 0.5; and c) the vast majority of funds whose Sharpe ratios are 
being compared are, in fact, very strongly, positively correlated, with between-fund correlations typically above 0.8.  
This is due to the fact that almost all comparisons, in practice, are between competing funds that are similarly 
categorized – e.g., large growth funds are being compared against other competing large growth funds (not against small 
value funds).  Consequently, as it would be used in practice, the two-sample estimator has good power, a finding that has 
not been presented in previous research on this topic.   

This study concludes with an application of the one- and two-sample estimators to returns data from twenty mutual 
funds, with the former yielding few statistically significant results and the latter yielding many.  The two-sample statistic, 
therefore, would appear to have great utility when used in conjunction with the ubiquitous mutual fund and hedge fund 
rankings based on Sharpe ratios.  Although very important in the industry, these rankings never are accompanied by p-
values indicating whether differences between Sharpe ratios are, in fact, statistically significant, rather than produced 
simply as an artifact of the volatility of financial returns.  Without such statistical discipline, the widespread ranking 
exercise is of little inferential value. 

To conclude, although recent empirical evidence (see Eling & Schuhmacher, 2007) suggests that the Sharpe ratio is, 
after all, just as good at ranking risk-adjusted performance as numerous other far more complex metrics, even under 
“difficult,” highly non-normal hedge fund returns data, debate about its utility per se in this regard is beyond the scope of 
this paper.  What this paper does provide is a scientific basis for easily and effectively using the Sharpe ratio inferentially 
under very general, real-world conditions.  This will help to inform such debates in the arena of financial analysis, and 
bring statistical discipline to the widespread usage of the Sharpe ratio in the industry.  In other settings, the mean-
divided-by-standard-deviation statistic, and its generally valid large-sample distribution presented in this paper, may 
have even greater practical utility, if not ubiquity.  
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APPENDIX A – Alternate Derivation of the Distribution of mSR  Under IID via the Delta Method  
 

According to Stuart & Ord (1994), pp. 350-352, the “delta method” can be used to derive the variance of a function, 

( )1 2 3, , ,...g x x x , of a number of random variables, and if the function is the ratio of two random variables, then: 

 

                                          ( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

2

1 1 2 1 2
1 2 2 2

2 1 21 2

var var cov ,
var 2

E x x x x x
x x

E x E x E xE x E x

  
= + −  
      

                                        (A1) 

If 1x µ=  and 2x σ=  then 

                                             ( ) ( ) ( )4 22 2
4 3

2 2 2

4 2
var 2

n nn µ σ σ µ σµ σµ σ
µσσ µ σ

 −
 = + −
  

                                            (A2) 

 

                                                        ( ) ( )42 2
4 3

2 2 4 2

1var
4n

µ σ µµ σµ σ
σ µ σ µσ

 −
 = + −
  

                                                        (A3) 

since 1 ftx Rµ= −  yields the same results above, we can treat SRµ σ = , so 

 

                                                        ( )
2

34
4 3

1var 1 1
4

SR
n

µµµµ σ
σ σσ

  = + − −    
                                                             (A4) 

 

                                                        ( )
2

34
4 3

1var 1 1
4

SR SR
n

µµµ σ
σ σ

  = + − −    
                                                           (A5) 

 

which is Merten’s (2002) result.  The more technical conditions required for the valid use of the delta method are 
discussed in Appendix C. 
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 APPENDIX B – Equivalence of Merten’s (2002) iid, and Christie’s (2005) GMM,  

Derivations of the Distribution of mSR   
 

Under only the requirements of stationarity and ergodicity, Christie (2005) derives (C21), 

                  m( ) ( )( ) ( ) ( ) ( )2 222 2
4

4 3 2

2 3
44

µ σµ
σσ σ σ

  − − − − − −  = − + − + 
  

t ft t t ft t ft t ft
SR R R R R R R R R R SRSR SRVar T SR E      (C21) 

which can be simplified as below28: 

( )( ) ( )2 2 22
4
4 3 2

2
3  

4
t f t t f t t f fR R R R R R R R RSR SR E SR E E

µµ
σσ σ σ

   − − −  − +     = + − ⋅ − ⋅ +             
 

since 2 2 2
tE R σ µ  = +  , 

( )( )2 2 2 2 22
24

4 3 2

2 2
3  

4
t f t t f fR R R R R RSR SR E SR

µ µ σ µ µµ
σ σ σ
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3 2 2 2 22
2 24

4 3

2 2
3 1  
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µ µ µ µµ
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since 3 2 3
3 3tE R µ σ µ µ  = + +  , 

( ) ( )2 3 2 2 3 2 2 2 22
34
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3 2 2
1 3  

4
f f fR R RSR SR
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4 31 3  
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fRSR SR
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σσ σ
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234

4 31 3
4

SR SR SRµµ
σ σ
 = + + − −  

 

2
34
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4

SR SR µµ
σ σ
 = + − −  

 

So  m( )
2

34
4 31 1  

4
SRVar T SR SR µµ

σ σ
 = + − −  

which is Merten’s (2002) result, and that derived in Appendix A. 

                                                 
28 As previously mentioned, even if the variance of the risk-free rate is not literally zero, as is often the case, as a practical empirical 
matter it can be treated as zero, and its arithmetic mean used as the presumed constant rate (so above, let ˆft f fR Rµ= = ).  
Covariances of the risk-free rate with fund returns, too, can be treated as zero as an empirical matter.  Mathematically, these 
assumptions are necessary for the above simplification. 
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 APPENDIX C – Variance of the Difference Between Two Sharpe Ratios 
 

If aSR and bSR are the respective Sharpe ratios for the returns (Rat and Rbt) of funds “a” and “b,” then use the “delta 

method”29 (see Greene, 1993, and Stuart & Ord, 1994) to obtain the asymptotic variance of m m( ) ( )− − −a b a bSR SR SR SR : 

Assuming 2 0σ =f , which is always essentially, if not literally true, ( )2,fR
SR f

µ
µ σ

σ
−

= = , so let ( )2 2, , ,µ µ σ σ= a b a bu  

and ( )2 2ˆ ˆ ˆ ˆ ˆ, , ,µ µ σ σ= a b a bu , then ( ) ( )ˆ 0,− Ω∼T u u N  where Ω  is the variance-covariance matrix of u: 

( ) ( )
( ) ( )

2
, 3 1 ,2
2

, 1 ,2 3
4 2 2

3 1 ,2 4

2 2 4
1 ,2 3 4

,

,

a a b a a b

a b b b a b

a b a a a a b

a b b a b b b

Cov

Cov

σ σ µ µ
σ σ µ µ

µ µ µ σ σ σ

µ µ σ σ µ σ

 
 
 
 Ω = − 
 
  − 

 where ( ), ,σ =a b Cov a b , ( ) ( )3 2
3 ,a a a aE a Covµ µ µ σ = − =  

,  

( ) ( )3 2
3 ,b b b bE b Covµ µ µ σ = − =  

 (see Mertens, 2002), ( )( ) ( )2 2
1 ,2 ,a b a b a bE a b Covµ µ µ µ σ = − − =  

,  

and ( )( ) ( )2 2
1 ,2 ,b a b a b aE b a Covµ µ µ µ σ = − − =  

 (see Espejo & Singh, 1999).  Now, 

m m( ) ( )( ) ( )0,− − − ∼a b a b diffT SR SR SR SR N Var ,  
'∂ ∂   = Ω   ∂ ∂   

diff
f fVar
u u

 , 
( ) ( )

3 3
1 1, , ,

2 2
a f b f

a b a b

R Rf
u

µ µ
σ σ σ σ

 − −∂  = − −
 ∂
 

, 

( ) ( ) ( ) ( ) ( ) ( )3 1 ,2 1 ,2 3 3 1 ,2, ,
4 3 3 4 4 31 1

2 2 2 2 2 2
a a f a b b f b a a f b b f a a f b a a fa b a b

diff
a b a ba a b a b b a a b

R R R R R R
Var

µ µ µ µ µ µ µ µ µ µ µ µσ σ
σ σ σ σσ σ σ σ σ σ σ σ σ

− − − − − −
= − − + − + + − − +

                 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 24 2 2 2 2 4
4 41 ,2 3

6 3 3 3 4 3 3 6

, ,

4 4 2 2 4 4
a a a f a f b f a b a f b f a b b b b fa b b f b b f

a a b a b b a b b

R R R Cov R R Cov RR Rµ σ µ µ µ σ σ µ µ σ σ µ σ µµ µ µ µ

σ σ σ σ σ σ σ σ σ

− − − − − − − −− −
+ − + − − +

                   
( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )2 24 4 2 2

4 43 3 1 ,2 1 ,2
, 4 4 3 3 6 6 3 3

,
2 2

4 4 2
a a a f b b b f a f b f a ba a f b b f b a a f a b b f

a b
a b a b a b a b a b

R R R R CovR R R R µ σ µ µ σ µ µ µ σ σµ µ µ µ µ µ µ µ
ρ

σ σ σ σ σ σ σ σ σ σ

− − − − − −− − − −
= − − − + + + + −

 

( ) ( ) ( )4 4 2 22 24 41 ,2 1 ,23 3
, 3 3 2 2 4 4 2 2

,
2 2

4 4 2
a a b b a bb a a ba b a b a b

a b a b a b
a b b a a b a b a b

CovSR SR SR SRSR SR SR SR
µ σ µ σ σ σµ µµ µρ

σ σ σ σ σ σ σ σ σ σ

   − −
   = − − − + + + + −
   
      

 

Since ( ) ( ) [ ]( ) [ ]( ) [ ]( )4 2 22 2 2 4 4 2 2
4,σ σ σ µ σ σ σ σ   = = = − = − − = − − −      a a a a a a a aVar Cov E a E a E a E a a E a ,                 

then     ( ) [ ]( ) [ ]( )2 22 2 2 2 2 2
2 ,2,σ σ σ σ µ σ σ = − − − = −  a b a b a b a bCov E a E a b E b , where 2 ,2µ a b  is the joint second central 

                                                 
29 The delta method is a widely used technique that provides an asymptotic approximation of the variance of a particular function (see 
Greene, 1993, pp.297-298, and Stuart & Ord, 1994, p.350).  It is valid as long as the random variables used in the function are 
asymptotically normal, and the function is (loosely speaking) continuous and continuously differentiable.  The former assumption is 
true in this case, since the sample mean and the sample variance are asymptotically normal.  The latter assumption clearly is violated if 
the variance of returns is zero.  This will never actually occur in practice using real data samples, but if the variance approaches zero, 
making the Sharpe ratio highly nonlinear, delta method estimates will become unstable, as correctly noted by Vinod & Morey (2000).  
However, this scenario, too, arguably will affect few, if any cases in practice, as the variances of the returns of most, if not all funds or 
stocks that would be of enough interest to be subjected to Sharpe ratio comparisons are quite far from zero; if they were not, there 
would be nothing to compare!  Still, it is important to note the limitations of analytical methods relied upon in any study, in case their 
domain of application changes.  Jobson & Korkie (1981), Lo (2002), Memmel (2003), and Mertens (2002) all use the delta method in 
their studies of Sharpe ratios, thus supporting its practical use here. 
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moment of the joint distribution of a and b.  The same result can be obtained using Stuart & Ord’s (1994) (pp.457-458) 
result of ( ) ( )2 2 2

2 ,2 1 ,1ˆ ˆ, 2 1σ σ κ κ= + −a b a b a bCov n n , where 2 ,2κ a b  is the second joint cumulant of the joint distribution of 

a and b, and 1 ,1κ a b is the first joint cumulant, equal to the first joint central moment, 1 ,1µ a b , which is the covariance.  

Dropping the n coefficients due to the use of the estimators 2 2ˆ ˆ,σ σa b  for 2 2,σ σa b  yields  

( )2 2 2 2 2
2 ,2 1 ,1 2 ,2 1 ,1 2 ,2 ,, 2 2 2σ σ κ κ κ µ κ σ= + = + = +a b a b a b a b a b a b a bCov .  Recognizing that the joint cumulant also can be 

expressed in terms of central moments, 2 2 2 2
2 ,2 2 ,2 2 ,0 0,2 1 ,1 2 ,2 ,2 2κ µ µ µ µ µ σ σ σ= − × − = − −a b a b a b a b a b a b a b  (see Stuart & 

Ord, 1994, p.107, and Smith, 1995), we have: 
 

( )2 2 2 2 2 2 2 2 2
2 ,2 1 ,1 2 ,2 , , 2 ,2, 2 2 2σ σ κ κ µ σ σ σ σ µ σ σ= + = − − + = −a b a b a b a b a b a b a b a b a bCov .   Thus, 

 

2 22 2
1 ,2 1 ,2 2 ,23 3 4 4

,3 3 2 2 4 4 2 2
12 1 1 2

4 4 2
b a a b a b a ba b a a b b

diff a b a b a b a b
a b b a a b a b a b

SR SRVar SR SR SR SR SR SR
µ µ µ σ σµ µ µ µ ρ

σ σ σ σ σ σ σ σ σ σ

     −
= − − + + + − + − − −     

         
2 2

1 ,2 1 ,2 2 ,23 3 4 4
,3 3 2 2 4 4 2 22 1 1 2 1

4 4 4
b a a b a ba b a a b b a b

a b a b a b
a b b a a b a b a b

SR SR SR SRSR SR SR SR
µ µ µµ µ µ µ ρ

σ σ σ σ σ σ σ σ σ σ

      
= − − + + + − + − − + −      

            
 

 

So analogous to the variance of the distribution of a single mSR , (6), the variance of the difference between two mSRs  is 

2
4 3
4 31 1

4
a a a

diff a
a a

SRVar SRµ µ
σ σ

 
= + − − + 

  
 

              
2

4 3
4 31 1

4
b b b

b
b b

SR SRµ µ
σ σ

 
+ − − 

  
 

            2 ,2 1 ,2 1 ,2
, 2 2 2 2

1 12 1
4 2 2

a b b a a ba b
a b a b

a b b a a b

SR SR SR SR
µ µ µ

ρ
σ σ σ σ σ σ

  
− + − − −  

    
 

 

Note that when 2 2
, 2 ,20,  ρ µ σ σ= =a b a b a b , 1 ,2 0a bµ = , and 1 ,2 0b aµ = , so the entire covariance term of diffVar  disappears, 

as it should. 

Minimum variance unbiased estimators of 1 ,2a bµ , 1 ,2b aµ , & 2 ,2µ a b  are the respective h-statistics 1 ,2a bh , 1 ,2b ah , & 

2 ,2a bh , where ( )( )2 2
1,2 0,1 1,0 0,2 1,0 0,1 1,1 1,22 2 1 2h s s ns s s s n s n n n   = − − + − −    , and 2,2h =  

( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
0,1 1,0 0,2 1,0 0,1 1,0 1,1 1,1 1,0 1,2 0,1 2,0 0,2 2,0 0,1 2,1 2,23 4 2 2 3 2 2 3 2 3 2 2 3 2 3 = − + + − − − − + + − − − − + + − + s s ns s ns s s n s n n s s s s n s s n n s s n n n s

( )( )( ) 3 2 1 − − − n n n n ,  where ,x ys  are the simple power sums of ,
1=

=∑
n

yx
x y i i

i

s a b  (see Rose & Smith, 2002, pp.259-260). 

 

This derivation is valid under iid returns, but because the one-sample estimator (6), derived using the same (delta) 
method (a la Mertens, 2002), was shown in Appendix B to be valid under the more general conditions afforded by its 
(identical) GMM derivation (a la Christie, 2005), we suspect those more general conditions of stationarity and ergodicity 
are the only requirements for the two-sample estimator of (13) as well.  Proving this is the topic of continuing research. 
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APPENDIX D – Equivalence of  Vardiff  with Memmel (2003) and Jobson & Korkie (1981)  
 

Under iid normality, Memmel’s (2003) correction of Jobson and Korkie’s (1981) variance of the two-sample statistic 
for the difference between two Sharpe ratios is: 

( )2 2 2
, ,

12 2 2
2

ρ ρ= = − + + −a b a b a b a bVar TV SR SR SR SR  

Under iid normality, TV is identical to diffVar , as shown below: 

2 2
1 ,2 1 ,2 2 ,24 3 4 3

,4 3 2 4 3 2 2 21 1 1 1 2 1
4 4 4

b a a b a ba a a b b b a b
diff a a b b a b

a a b a b b a b a b

SR SR SR SRVar SR SR SR SR
µ µ µµ µ µ µ ρ

σ σ σ σ σ σ σ σ σ σ

      
= + − − + + + − − + − + −      

            
 

Under iid normality, 3
3 0µ σ = , 1,2 0µ = , 4

4 3µ σ = ,  & ( )2 2 2
2 ,2 ,1 2µ ρ σ σ= +a b a b a b  (see Stuart & Ord, 1994, p.105), so 

[ ] [ ] ( )2 2 2 2 22 2 ,
, 2 2

1 2
1 3 1 0 0 1 3 1 0 0 2

4 4 4
a b a b a ba b a b

diff a b
a b

SR SR SR SRVar
ρ σ σ σ σ

ρ
σ σ

  + −  = + − − + + + − − + − + =  
    

 

           
2 2

2
, ,2 2 2

2 2 4
ρ ρ  = + + − +   

a b a b
a b a b

SR SR SR SR
 

           2 2 2
, ,

12 2 2
2a b a b a b a bSR SR SR SR TVρ ρ = − + + − =  , which is Memmel’s (2003) result.  



 

 

Preprint - ©2005 J.D. OPDYKE, DataMineIt              Forthcoming – Journal of Asset Management, 8(5), Dec 2007 27 

APPENDIX E – Simulation Distributions: APD of Komunjer (2006)  
 

Komunjer (2006) gives the density of the asymmetric power distribution (APD) below:  

( )
( )

( ) ( )

1
, ,

1
, ,

exp           if 0,
1 1

exp     if 0,
1 1 1

λ
λα λ α λ

λ

λ
λα λ α λ

λ

δ δ
λ α

δ δ
λ α

 
− ≤ Γ +  

=
 
− > 

Γ + −  

u u

f u
u u

 where 0 < α < 1, λ > 0, and 
( )
( ),

2 1

1

λλ

α λ λλ

α α
δ

α α
−

≡
+ −

 

The α parameter (0 < α < 1) controls skewness, with symmetry at α = 0.5, and λ > 0 controls kurtosis, such that when α = 
0.5, λ = ∞ → the uniform distribution, λ = 1.0 → the Laplace distribution (with variance = 2.0), λ = 2.0 → the normal 
distribution (with variance = 0.5) and any λ → the Generalized Power Distribution.  When α ≠ 0.5, λ = 1.0 → the 
Asymmetric Laplace distribution of Kozubowski & Podgorski (1999), and λ = 2.0 → the two-piece normal distribution 
(see Johnson, Kotz & Balakrishnan, 1994, vol. 1 p.173 and vol. 2 p.190).  Thus does APD allow simultaneous control 
over skewness and kurtosis, nesting the normal and Laplace densities, and asymmetric versions of each, as well as any 
“in between” combination of asymmetry and kurtosis.   

Location and scale are accommodated via the simple transformation: θ φ≡ +X U  

APD moments are given by: 

( ) ( )( )
( )

( ) ( )1 1

,

1 1 1
1 λ

α λ

λ α α
λ δ

+ +Γ + − + −
=

Γ

r r r
r

r

r
E U (see Table F1 below).  So for example, 

( ) ( )
( ) ( ) 1

,

2
1 2

1
λ

α λ
λ

α δ
λ

−Γ
= −

Γ
E U      and   ( )

( ) ( ) ( ) [ ]
( )

2 22
2
,2

3 1 1 3 3 2 1 2

1
λ

α λ

λ λ α α λ α
δ

λ
−

 Γ Γ − + − Γ −   =
Γ  

Var U  

To standardize the APD for the simulations presented in this study, U is modified by  u’ =  u / sqrt[Var(u)] (because, for 
example, when α = 0.5 and λ = 1.0, Var(U) = 2.0, and when α = 0.5 and λ = 2.0, Var(U) = 0.5). 

 
Table E1:  Skewness η3 and Kurtosis η4 of APD by Values of α and λ 

 

Special-case Nested Distribution α λ Skewness η3  Kurtosis η4 
Asymmetric Laplace 0.1 / 0.9 1.00 ± 2.2311 6.6485 
 0.1 / 0.9 1.25 ± 1.9870 5.0165 
 0.1 / 0.9 1.50 ± 1.8415 4.1686 
 0.1 / 0.9 1.75 ± 1.7457 3.6595 
Two-piece normal 0.1 / 0.9 2.00 ± 1.6784 3.3243 
Asymmetric Laplace 0.3 / 0.7 1.00 ± 2.1867 7.4726 
 0.3 / 0.7 1.25 ± 1.9474 5.6383 
 0.3 / 0.7 1.50 ± 1.8048 4.6853 
 0.3 / 0.7 1.75 ± 1.7109 4.1131 
Two-piece normal 0.3 / 0.7 2.00 ± 1.6450 3.7363 
Laplace (variance = 2.0) 0.5 1.00 0.0000 6.0000 
GPD 0.5 1.25 0.0000 4.5272 
GPD 0.5 1.50 0.0000 3.7620 
GPD 0.5 1.75 0.0000 3.3026 
Normal (variance = 0.5) 0.5 2.00 0.0000 3.0000 
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Figure 3E: Asymmetric Power Distribution by α by λ (all densities standardized so that Variance = 1.0) 
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