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Responsible use of any portfolio model that incorporates correlation structure requires knowledge of its sampling distribution. This is 
especially true of models used in stress testing, or ones requiring the specification of particular scenarios with particular correlation values (e.g. 
in views-based portfolio analyses a la Black-Litterman (1991) and its variants), because there is no other way to reliably associate those values 
with probabilities. Put differently, the correlation matrix is a model parameter like any other, and a model’s results cannot be fully understood 
or relied upon if the behavior of its parameters is not well defined. This makes answering the following question of central importance: given 
an estimated (product-moment) correlation matrix and an assumed or well-estimated data generating mechanism, what is the sampling 
distribution of that matrix? And how does that finite sample density relate to the densities of each of its pairwise correlation cells?

We provide the solution to this question for any correlation matrix under the most general data conditions possible, requiring only the 
existence of the mean and variance for each marginal distribution in the portfolio and the positive definiteness of the correlation matrix. This 
solution explicitly connects the densities associated with each of the correlation cells to that of the entire matrix, making the latter a function 
of the former. One only needs to specify the cumulative distribution function (cdf) value associated with each of the cells to retrieve the 
corresponding, unique correlation matrix (as well as its overall probability of occurrence conditional on the estimated matrix). And in reverse, 
given a valid (positive definite) correlation matrix, the density provides the corresponding, unique matrix of cdf values, as well as its overall 
conditional probability of occurrence.

Associating matrices with their 'cdf matrices' can be defined in terms of shifts from the estimated correlation matrix, providing a very 
convenient and flexible way to specify scenarios at the most granular level – that of every pairwise relationship between factors/variables, as 
opposed to merely at the level of the factors/variables. This all is accomplished within a geometric framework wherein the sampling 
mechanism automatically enforces positive definiteness, which not only allows for efficient enumeration of the sampling space, but also and 
more importantly, much more robust inference of the entire matrix compared to other more limited (spectral) approaches.

Finally, unlike any other framework, the geometric approach to this problem also scales on itself: it can be applied to any submatrix of the 
given correlation matrix, enabling fully flexible scenario specification wherein some cells remain completely untouched, while others are 
appropriately affected by the scenario. This is a realistic, common need in many investment and risk settings.

The foundations of the geometric approach have long been established within the relevant statistical and finance literatures, but its pieces 
have not previously been combined in such a way as to solve this problem under general conditions. All results are validated by well-
established results from the Random Matrix Theory literature, even as the geometric approach is more robust, empirically and structurally, 
than those relying on spectral distributions.

Lastly, the solution is scalable, having been readily implemented on a commodity laptop on matrices 100x100 and larger.

Book Chapter Abstract
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• Responsible use of any (portfolio) model that incorporates Pearson’s correlation matrix* requires 

knowledge of its sampling distribution. To date, an easily implemented, robust, and fully flexible 

solution valid under general conditions has remained elusive, even as this is often the most impactful 

parameter in such models.  Knowledge of its finite sample density is especially important for portfolio 

models used in stress testing, or requiring the specification of particular scenarios with particular 

correlation values (e.g. views-based portfolio analyses a la Black-Litterman (1991) and its variants).

• Objective: Develop a method to obtain the finite sample density of the correlation matrix, and its 

inverse (‘quantile function’), under the most general conditions possible, requiring only the existence 

of the mean, the variance, and positive definiteness.  Important characteristics:

• Fully Flexible: make this density 

i. a direct function of the densities associated with each of the correlation matrix cells, and

ii. valid and applicable to any subset of cells in the matrix while holding the rest constant

Satisfying i. and ii. allows for fully flexible stress testing and scenario specification, with the added 

benefit that specific scenarios for the correlation matrix now can be defined probabilistically.

• Scalable: reasonably fast for reasonably high dimensions (e.g. 100x100), with an implementation 

that does not change or become unwieldy in higher dimensions.

• Robust inference, even when the matrix approaches singularity (i.e. non-positive definiteness).

• Accurate: does not rely on approximations that can be inaccurate under conditions that are not 

uncommon in financial portfolios (e.g. Fisher Z transformation under near singularity).

• Requirements: The above is conditional on 1. a specified or well estimated correlation matrix (this is a 

very rich literature) and 2. a specified or well estimated data generating mechanism.

I.  Objective

* Unless otherwise noted, “correlation” herein refers to Pearson’s product moment correlation (see Pearson, 1895).
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• Pearson’s product moment correlation is defined as ρ; its sample analog r uses sample moments:

• The corresponding correlation matrix R is the matrix of all pairwise correlations, with the following 

characteristics:

• Symmetry: 

• Unit diagonal entries: 

• *Bounded non-diagonal entries: 

• The matrix is positive definite, i.e. all eigenvalues 

• For completeness, we define eigenvalues below:

If there exists a nonzero vector v such that                 then  λ is an eigenvalue of R and v is its 

corresponding eigenvector.  λ and v can be obtained by solving

The eigenvalue can be thought of as the magnitude of the (portfolio) variance in the direction of 

the eigenvector. 

II.  Definitions
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• For the identity matrix (correlations all equal zero) under Gaussian data and d≥2, Gupta & Nagar 

(2000) provide the pdf

where R is the empirical correlation matrix, p is its dimension (#rows/cols), n is the sample size, and Γ

is the gamma function.  However, we focus below on methods for efficiently sampling this density. 

• The c-vines and onion methods (Lewandowski et al., 2009)

• The restricted Wishart distribution approach of Wang et al. (2018).

• The direct formulation method of Madar (2015)

• The Cholesky-Metropolis method of Cordoba et al. (2018)

• The polar angles distribution of Makalic and Schmidt (2018) combined with the polar 

representation of Pinheiro & Bates (1996), Rebonato & Jaeckel (2000), & Rapisarda et al. (2007).

• The geometric interpretation provided by the polar angles approach is based on the fact that the 

cosine of the angle between two mean-centered vectors X, Y is equal to Pearson’s correlation:

• The framework of our proposed method relies on this geometric interpretation, so it is worth 

examining one sampling implementation based on it here.

III.1  Literature: Identity Matrix & Gaussian Data
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where  is the determinant function, 
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• Of the sampling methods listed above, Makalic and Schmidt (2018) arguably is the most simple and 

among the fastest (see Cordoba et al., 2019).

• The polar angles approach to sampling the (Gaussian data) identity matrix is an efficient recognition 

of the fact that merely perturbing non-diagonal correlation values uniformly, between -1 and 1, will 

generate mostly non-positive definite matrices.  In fact, Bohn & Hornik (2014) and Pourahmadi & 

Wang (2015) show that the ratio of valid correlation matrices to all matrices generated this way that 

LOOK like correlation matrices is

• For even relatively small matrices of dimension p=25, the odds of successfully randomly generating a 

sinlge valid correlation matrix are less than 2 in ten quadrillion: hence, for the sake of computational 

efficiency, we need to ONLY generate valid, positive definite matrices by constraining our sampling to 

those matrices on the hyper hemisphere, as described below.

III.1  Literature: Identity Matrix & Gaussian Data
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• The Cholesky factorization of a correlation matrix (see below) has rows whose squares sum to 1.0, so 

it is commonly used as a convenient way to ensure that samples remain on the unit hypersphere (or 

technically in this case, the unit hyper-hemisphere of dimension p). 

• Pourahmadhi & Wang (2015) and others show that the uniform distribution of positive definite 

matrices on the p-dimensional hemisphere is proportional to the determinant of the Jacobian, which is 

defined in terms of the Cholesky factorization as shown below (see also Cordoba et al., 2018)

• So Makalic and Schmidt (2018) and others (see Pourahmadi & Wang, 2015) recognized that sampling 

polar angles based on pdf

satisfies this constraint.  Although not mentioned in Makalic and Schmidt (2018), importantly note that 

k = #columns – column# (so for the first column of a p=10x10 matrix, k=9; for the second column, k=8, 

etc.).  In other words, the spread of the angles distributions is a function of the column number (as 

shown in graphical results below).

III.1  Literature: Identity Matrix & Gaussian Data
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• For completeness, we include below the definition of the Cholesky factor and corresponding formulae:

• A correlation matrix R will be real, symmetric positive-definite, so the unique matrix B that satisfies  

where B is a lower triangular matrix (with real and positive diagonal entries), and       is its transpose, 

is the Cholesky factorization of R.  Formulaically, B’s entries are as follows:

• The Cholesky factorization can be thought of as the matrix analog to the square root of a scalar.

III.1  Literature: Identity Matrix & Gaussian Data
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• For sampling from parametric distributions, ideally the cdf can be inverted analytically, and then 

inverse probability sampling can be used.  But in this case, Maklic and Schmidt (2018) state: 

“Generating random numbers from this distribution is not straightforward as the corresponding 

cumulative density [sic] function, although available in closed form, is defined recursively and requires 

O(k) operations to evaluate. The nature of the cumulative density [sic] function makes any procedure 

based on inverse transform sampling computationally inefficient, especially for large k.”

• However, we shall see later that, in fact, Opdyke (2019) derives the analytical cdf of this distribution, 

as well as its analytical inverse, thus enabling the use of the inverse probability transform for more 

efficient sampling here, especially for large k (i.e. for large dimensional matrices).

• Maklic & Schmidt’s (2018) approach was rejection sampling with a scaled beta distribution envelop: 

• The algorithm’s maximum expected iterations per sample is                           making it roughly 10% 

less efficient than an analytical solution.

III.1  Literature: Identity Matrix & Gaussian Data
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• The more general and important point here is that we have a direct relationship between the 

angles between two data vectors, and their corresponding correlations.  Translation between the 

two is straightforward and non-directional.  This will be explored in depth later, but in summary:

1. estimate the correlation matrix

2. obtain the Cholesky factorization of the correlation matrix

3. Use inverse trigonometric functions on 2. to obtain corresponding spherical angles

And in reverse:

3. Start with a matrix of spherical angles

2. apply trigonometric functions to obtain the Cholesky factorization 

1. multiply 2. by its transpose to obtain the corresponding correlation matrix

see Rebonato & Jaeckel (2000) and Rapisarda et al. (2007) (note a typo in the formula in Pourahmadi

& Wang (2015) for the first 3 steps)

• Note that this relationship is true generally, not only for the identity matrix under Gaussian 

data.

• Note also the inverse relationship between angles and correlations: correlations decrease 

monotonically in their corresponding angles, i.e. correlations increase as angles decrease to zero, and 

decrease as angles increase to 𝛑 (see Zhang et al. (2015) and Lu et al. (2019)).  The range from 0 to 

𝛑 rather than 0 to 2𝛑 is why this is the p-dimensional hyper hemisphere rather than the hypersphere.

III.1  Literature: Identity Matrix & Gaussian Data
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III.1  Literature: Identity Matrix & Gaussian Data
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III.1  Literature: Identity Matrix & Gaussian Data

Correlations to Angles Angles to Correlations

* INPUT rand_R is a valid correlation matrix;

cholfact = T(root(rand_R, "NoError"));

rand_corr_angles = J(nrows,nrows,0);

do j=1 to nrows;

do i=j to nrows;

if i=j then rand_corr_angles[i,j]=.;

else do;

cumprod_sin = 1;

if j=1 then rand_corr_angles[i,j]=arcos(cholfact[i,j]);

else do;

do kk=1 to (j-1);

cumprod_sin = cumprod_sin*sin(rand_corr_angles[i,kk]);

end;

rand_corr_angles[i,j]=arcos(cholfact[i,j]/cumprod_sin);

end;

end;

end;

end;

* OUTPUT rand_corr_angles is the corresponding matrix of angles;

SAS/IML code (v9.4)

* INPUT rand_angles is a valid matrix of correlation angles; 

Bs=J(nrows, nrows, 0);

do j=1 to nrows;

do i=j to nrows;

if j>1 then do;

if i>j then do;

sinprod=1;

do gg=1 to (j-1);

sinprod = sinprod*sin(rand_angles[i,gg]);

end;

Bs[i,j]=cos(rand_angles[i,j])*sinprod;

end;

else do;

sinprod=1;

do gg=1 to (i-1);

sinprod = sinprod*sin(rand_angles[i,gg]);

end;

Bs[i,j]=sinprod;

end;

end;

else do;

if i>1 then Bs[i,j]=cos(rand_angles[i,j]);

else Bs[i,j]=1;

end;

end;

end;

rand_R = Bs*T(Bs);

* OUTPUT rand_R is the corresponding correlation matrix;
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• These geometric relationships all are well established in the statistical sampling literature, and are key 

to the method presented later herein.

• Limitations:  Of course, all the methods listed above for sampling the correlation matrix, including that 

of Makalic and Schmidt (2018), have two major limitations: they only are valid when the true 

correlation matrix is the identity matrix, and they only are valid when the underlying data is Gaussian.

• While the identity matrix is fundamental and useful for testing one specific hypothesis, it arguably is 

the least interesting or useful for general inference since for any given instance in practice, the 

occurrence of zero’s in all non-diagonal cells is highly improbable.  Also, the requirement that data is 

strictly multivariate Gaussian is quite restrictive.

III.1  Literature: Identity Matrix & Gaussian Data
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• Case of d=2:

Taraldsen (2021) derived the exact sampling/empirical distribution of Pearson’s correlation under 

Gaussian data for the pairwise case, i.e. for d=2, as below:

• Note that Taraldsen (2021) shows that the approximate density of the pairwise correlation using 

Fisher’s Z-transformation loses accuracy as           , especially for smaller samples.

• Case of d>2:  Pham-Gia & Choulakian (2014) provide

• Limitations: Application of Pham-Gia & Choulakian (2014) above and their equivalent expressions 

requires a priori knowledge of true (not estimated) variances.  It also arguably is quite cumbersome to 

implement.  Finally, it remains valid only under the fairly restrictive case of multivariate Gaussian data.

III.2  Literature: Gaussian Data
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• Archakov & Hansen (2021) introduce a parameterization of the correlation matrix that maps uniquely, 

one-to-one, to the positive definite space, thus providing a density for inference.  It is based on the 

Fisher Z transformation, remains invariant to reorderings of the variables, and is accompanied by an 

algorithm that provides the inverse mapping from the parameterization to the correlation matrix.  

• Limitations:  The authors state, “This makes the transformation potentially useful for … inference.  

These attributes tend to deteriorate as C approaches singularity.  This is not unexpected, because it is 

also true for the Fisher transformation when the correlation is close to ±1.”

• As previously noted, Taraldsen (2021) shows that the approximate density of the pairwise correlation 

using Fisher’s Z-transformation loses accuracy as           , especially for smaller samples.  This is 

consistent with the authors’ comments here, but they state this may only be material under extreme 

conditions.  All else equal, having a method that avoided this non-robustness issue altogether would 

be preferrable.

• The method only provides the density of the entire correlation matrix: it does not appear to be able to 

modify correlation matrices, cell-by-cell, probabilistically, based on their individual densities.  Again, 

this may not be an objective of the method, but all else equal, it is a very useful feature for stress 

testing and scenario analysis.  The method we present herein – NAbC – has this capability.

• Finally, it is unclear whether the method can be applied successfully to submatrices of the correlation 

matrix (while holding the rest of the matrix constant).  This is relevant as many reasonable scenario 

specifications would require this. The NAbC method we present herein has this capability also.  

III.3  Literature: General Conditions

1 →
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• Lan et al. (2020) take a fully Bayesian approach to this problem for both covariance and correlation 

matrices.  Similar to the NAbC method we present herein, they use the Cholesky factorization to 

maintain positive definiteness, and by defining distributions on spheres as we do, utilize a large class 

of flexible prior distributions.  

• Limitations:  This approach is very comprehensive, involved, and includes estimation, which our 

method does not.  However, it appears that for modeling correlation matrices specifically, their 

approach has some limitations.  The authors state: “The priors for correlation matrix specified through 

the sphere-product representation are in general dependent among component variables.  For 

example, the method we use to induce uncorrelated prior between

has a direct consequence that                                        In another word, more informative 

priors (part of the components are correlated) may require careful ordering in       .  To avoid this 

issue, one might consider the inverse of covariance (precision) matrices instead.  This leads to 

modeling the conditional dependence, or Markov network …  Our proposed methodology applies 

directly to (dynamic) precision matrices/processes, which will be our future direction.”  

• The method we develop herein (NAbC) for correlation matrix inference and stress testing/scenario 

specification can be applied successfully to ANY submatrix, while holding the rest of the matrix 

constant, without any unintended ‘dependencies’ and all while automatically enforcing positive 

definiteness.  In fact, our approach fixes the ‘unintended dependencies’ problem that other 

researchers note, yet fail to control (this is discussed later).  This perfect control, at the correlation cell 

level and ANY combination thereof, is very powerful, useful, and important as fully flexible scenario 

specification requires nothing short of this.  

III.3  Literature: General Conditions

( ) and  by setting 0 i j jky y i j l 

 iy
for k i ( )Cor , 0 for .i jy y i i  
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• Ghosh et al. (2020) also take a fully Bayesian approach to this problem, and just like our approach, 

they reparameterize Cholesky factors in terms of hyperspherical coordinates where the angles vary 

freely in the range [0, π). Their focus is on estimation, although as a Bayesian approach it is 

comprehensive.

• Limitations:  This approach is involved, and includes estimation, which our method does not. 

However, its use is restricted to parametric priors, which may limit its implementation under complex 

real world conditions (some of which are empirically implemented herein).  In contrast, NAbC makes 

use of fully flexible nonparametric kernels that fit ANY angles distribution resulting from ANY data 

generating mechanism (with finite first and second moments). Also, Ghosh’s et al. (2020) approach 

does not appear to have the capability of modeling any submatrix while leaving select cells of the 

correlation matrix ‘untouched.’ This perfect control, at the correlation cell level and ANY combination 

thereof, is very powerful, useful, and important as fully flexible scenario specification requires nothing 

short of this.  This is one of the advantages of the NAbC method we develop herein and present 

below.

III.3  Literature: General Conditions
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• Papenbrock et al. (2021) develop a novel approach to simulating correlation matrices for financial 

markets using evolutionary algorithms.  It allows for the flexible yet robust incorporation of many 

observed features of real world financial correlation matrices.   The algorithm scales well and can be 

used for backtesting, pricing, and hedging correlation-dependent investment strategies and financial 

products. 

• Limitations:  This approach does not appear to automatically enforce positive definiteness in its 

simulations.  Enforcing positive definiteness ex post is less efficient, and always introduces systematic 

changes in the resulting matrices; here it could very well materially alter the very characteristics the 

algorithm is attempting to embed in the synthetic data.  Because the method we propose below 

(NAbC) automatically enforces positive definiteness while also providing perfect control at the 

correlation cell level to specify ANY combination of cells for perturbation, it may well be the perfect 

partner for the evolutionary approach.  It could be applied as a very flexible filter for invalidly 

generated correlation matrices, probabilistically ensuring that the correlation density generated is not 

systematically biased or skewed in unintended ways.  It also could asses the degree to which 

synthetically generated ‘clusters’ are outlying, probabilistically.

III.3  Literature: General Conditions



© JD Opdyke   21 of 275

• Opdyke (2019) derived the analytic cdf for the pdf used by Makalic and Schmidt (2018):

as…

But this can be simplified further using two established (if not obscure) identities.

In addition, we have

IV.1  New Results: Identity Matrix & Gaussian Data
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• Taken together we have:

• Recognizing that the complete Beta function is the inverse of the normalization factor of c(k) for these 

values, their product equals 1 and cancels, as do the two cosine terms, and we have:

• The cdf of the well-known Beta distribution is so straightforward that it readily can be used in a 

spreadsheet.  And now, we can even obtain an analytic* quantile function of the angle distribution:

IV.1  New Results: Identity Matrix & Gaussian Data

* Note that we use the term ‘analytic’ as opposed to ‘closed-form’ because we are unaware of a closed-form algorithm for the inverse cdf of the beta 

distribution (see Sharma and Chakrabarty, 2017, and Askitis, 2017).  However, for all practical purposes this is essentially a semantic distinction since this 

quantile function is hard-coded into all major statistical / econometric / mathematical programming languages.
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IV.1  New Results: Identity Matrix & Gaussian Data
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• So now we have for the angles distribution, under the Gaussian identity matrix, for the first time 

together, the pdf, cdf, and (analytic) quantile function:

• Apparently the first (and only other) presentation of this quantile function result comes from an 

anonymous blog post in March, 2018, although it was obtained via a different derivation, which serves 

to further validate the result.

IV.1  New Results: Identity Matrix & Gaussian Data

* See Xi’an, March, 2018 (https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-unit-n-1-sphere-defined-by-n-1-

dime/331850#331850 and https://xianblog.wordpress.com/2018/03/08/uniform-on-the-sphere-or-not/).  

In the interest of proper attribution, a reference on the website to the book “The Bayesian Choice” hints that the Xi’an pseudonym is Christian Robert, a 

professor of Statistics at Université Paris Dauphine (PSL), Paris, France, since 2000 (https://stats.stackexchange.com/users/7224/xian).
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• The analytic quantile function now does, in fact, allow for the straightforward use of the inverse 

transform method for sampling, using a uniform random variate in place of “p” in its formula above, 

obviating the need for less efficient rejection sampling a la Makalic and Schmidt (2018), or any of the 

other much more complicated sampling schemes listed above.  

• Not surprisingly, code implementing the inverse transform solution, without the need to reject 

samples, is about 10% faster than that of Makalic and Schmidt (2018), all else equal, as expected.

• For shorthand, we refer to this density (collectively, the pdf+cdf+analytic quantile function) as “C3” –

“C”osine, plus the subscripts on the Gaussian hypergeometric function 2+1=3 for “C3.”

• Of course, as stated previously, the identity matrix, while fundamental and useful for testing one 

specific hypothesis, arguably is the least interesting for general inference, as empirical correlation 

matrices in practice rarely if ever are characterized by non-diagonals that all are zero.  Also, the 

presumption of multivariate Gaussian data is quite restrictive.  

• Below we present a method to obtain the finite sample density of the correlation matrix, as well as its 

inverse (‘quantile function’), under general conditions, requiring only the existence of the first two 

moments and positive definiteness.  

• Note that this is conditional on 1. a specified or well estimated correlation matrix and 2. a specified or 

well estimated data generating mechanism.

IV.1  New Results: Identity Matrix & Gaussian Data
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• Estimation is beyond scope: our starting point is with a presumably well estimated or specified/known 

correlation matrix.  The estimation literature is rich and includes a very wide range of approaches, 

often overlapping and combined, including a variety of shrinkage approaches (Ledoit and Wolf, 2003, 

2022, Lolas and Ying, 2021, Huang and Fryzlewicz, 2019); regularization (Friedman et al., 2008, 

Chen et al., 2019, Skachkov et al., 2021, Cui et al., 2016, Lam, 2020); hypersphere decomposition (Li, 

2018); robust alternative Cholesky decompositions and ensembles thereof (Lu et al., 2020, Kang et 

al., 2019); thresholding (Goes et al., 2018, Tanioka et al., 2021) and other robust methods (Nanda et 

al., 2019; Serra et al., 2018, Yang and Cui, 2019; Auguin et al., 2018); extensions of DCC (Bauwens 

& Otranto, 2020); total positivity (Agrawal et al., 2020); sparse graphical modeling (Riccobello et al., 

2022); CNN (Fang et al., 2021); factorized kernel approach (Zhang and Li, 2021); generalized 

autoregressive score (Stollenwerk, 2022); clustering (Begušić and Kostanjčar, 2019); weighted least 

squares (Li et al., 2022); reinforcement learning (Lu and Simaan, 2022); regular vines (Zhu and 

Welsch, 2018); coupled regularized, linear pooling, and spatial sign methods (Raninen, 2022); 

Bayesian and spherical approaches (Lan et al., 2020, Ghosh et al., 2021); random matrix theory 

(RMT) (Leidoit & Péché, 2011; Potters & Bouchaud, 2020), and more specifically, rotationally invariant 

estimators (RIE) (Bun et al., Bun, 2018, Bun et al., 2016) under non-stationarity (Bongiorno et al., 

2021). 

• In addition to a well-estimated correlation matrix, we presume a well-estimated, or specified/known, 

data generating mechanism.  All responsibly and scientifically defined empirical methods require 

defining an appropriate range of application based on data structure, so this requirement is part and 

parcel of the standard scientific approach.

• Herein we continue with the geometric framework described above and established in Pinheiro & 

Bates (1996), Rebonato & Jaeckel (2000), Rapisarda et al. (2007), and Pourahmadi & Wang (2015).

IV.2  New Results: General Conditions
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• As we saw above in the case of the Gaussian identity matrix, for the geometric framework all boils 

down to the distribution of the angle associated with each pairwise correlation.

• Inference:

A crucially important characteristic of these angles distributions is that, unlike the distributions of the 

correlations themselves, they vary freely, remaining independent of each other (see Pourahmadi & 

Wang, 2015, Tsay & Pourahmadi, 2017, and Ghosh et al., 2020).  

• This means that the multivariate density of angles is simply a function of the products of their 

individual densities.

• Consequently, not only do the angles define, deterministically, the correlation values themselves via

and thus each of the marginal distributions of the pairwise correlations (see Pourahmadi & Wang, 

2015 and Ghosh et al., 2020), but also determine in a very straightforward way the probability of 

observing an entire correlation matrix (this probability is equivalent to a p-value, and described below).

• All we need now is the distribution of the angles under general conditions, just as we derived them 

above for the (Gaussian) identity matrix.

• This remains an open, and apparently non-trivial problem, at least analytically.  The RMT literature 

shows that spectral distributions change notably and nontrivially based on the characteristics of the 

underlying data ensembles (e.g. heavy-tailedness (see Burda et al., 2004, Burda et al., 2006, 

Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & Potters, 2015, Martin & Mahoney, 2018), 

and serial correlation (see Burda et al., 2004, 2011)), indicating that deriving a spectral distribution 

valid for all cases would be challenging, if at all possible.  A similar derivation for angles distributions 

likely would be as challenging, and is not found in the extant literature.

IV.2  New Results: General Conditions
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• However, while an “all-cases” analytic derivation for the angles distribution would be very useful, not 

having it is not a show stopper: we can proceed with nonparametric kernel density estimates of these 

distributions.  The process has five steps:

1. Simulate samples (say, N=10k) based on the specified/known or well estimated data generating 

mechanism.

2. Calculate the corresponding N correlation matrices and their Cholesky factorizations, and transform 

each of these into a lower triangle matrix of angles, as described above on pp12-14.

3. Fit kernel densities to the p(p-1)/2 empirical angle distributions, each having N observations.

4. Generating samples from these densities in 3. is identical to perturbing the actual angle datapoints 

from 2. based on the fits in 3.

5. All samples from 4. are converted back to a re-parameterized Cholesky factorization per pp.12-14, 

and then multiplied by its transpose to obtain a set of N validly sampled correlation matrices.  Positive 

definiteness is automatically enforced.

• Throughout the rest of this paper, we exhaustively compare various metrics based on 3. vs. those 

based on 4., as 3. is the empirical ‘truth’ against which we are testing the validity of the samples 

generated in 4. (technically, 4. and 5.).  Once 3. is generated, further sampling from 4. is faster than 

turning to 3. again, although the two are equivalent.

• We dub the above sampling method via 4. “NAbC” – Nonparametric Angles-based Correlations.

IV.2  New Results: General Conditions
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• All samples generated from Step 4. (i.e. NAbC) will yield only positive definite correlation matrices.

Correlation matrix sampling distribution + quantile function via NAbC:

A. Using NAbC, we can now specify any (positive definite) correlation matrix of the same dimension p 

and use the densities from 4. (or 3.) empirically to obtain the unique cdf's associated* with each of its 

correlation cells: simply translate the correlation matrix to its matrix of angles, match each angle to the 

closest angle** in the corresponding empirical distribution of 4., return the associated empirical cdf.

B. Conversely, if we specify cdf's for each of the correlation cells, we can obtain the inverse (‘quantile 

function’) – i.e. the unique correlation matrix associated with those cdf's.  Simply ‘lookup’ the angles in 

4. (or 3.) associated with each specified cdf, translate the resulting matrix of angles to its re-

parameterized Choleksky factor, and then multiply by its transpose to obtain the corresponding 

correlation matrix.

• The simple rule is this: any sampling or perturbation must be done after translating correlations or 

cdf's to angles to enforce positive definiteness – sampling/perturbation can never be performed on the 

correlations themselves as the resulting matrix almost certainly will not be positive definite.

• In either A. or B. above, the independence of the individual angles distributions leads to a novel 

‘distance metric’ that also serves as a p-value: this is simply the probability of observing a correlation 

matrix at least as extreme at that specified, conditional on the one observed/estimated.  Note that 

‘extreme’ here implies deviation from the empirical mean correlation matrix, i.e. the expected value.***

IV.2  New Results: General Conditions

*   Note that because this ‘look up’ is based on an empirically generated density, near-singular extreme examples sometimes may not have been simulated, 

thus preventing a successful ‘look up.’  For these more extreme cases, the n=simulations must be increased to contain additional, more ‘extreme’ cases.

** Technically this is a match with the closest angle with a cdf at least as large as the specified cdf, but empirically, for N samples ≥ 10k, these are the same.

*** Note that we are only focused here on the sampling distribution, and address later in this paper the relevant issue of the non-preservation of Pearson’s 

correlation under nonlinear transformations.
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• To define the p-value, we need to calculate the empirical mean correlation matrix from the simulations 

in 3., and translate this to a matrix of angles.  Then we obtain the empirical cdf's of these “mean-

angles” with a ‘look up’ to the entire angles distributions from 3.  Often these will be close to 0.5, but 

asymmetry can be notable in some cases (see APPENDICES) and must be properly accounted for.

• The p-value is calculated in two steps: determine the distance between the cdf's of the angles of the 

specified correlation matrix (or just the cdf’s if only these are specified) and those of the “mean-

angles,” and sum the (usually two) tails BEYOND this distance (under notable asymmetry, this is 

sometimes just one tail – see Graph 1 below); then multiply all of these summed tail-density values for 

all of the cells.  This product is the p-value for the matrix.  Below are the tail probabilities for two cells 

with the same “mean-angles” cdf's and distributions, but different specified correlation values/cdf's:

• Note that while a cdf=0.1 is hardly more ‘extreme’ than a cdf=0.85 in absolute terms, relative to the 

mean cdf=0.6, it is twice as ‘extreme,’ i.e. twice as far from mean cdf=0.6, and associated with only 

1/5 the probability of being observed.

IV.2  New Results: General Conditions

Graph 1: p-value for a single specified (more) extreme angle cdf Graph 2: p-value for a single specified non-extreme angle cdf
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• This p-value is very useful.  It can be used for hypothesis testing, monitoring correlation matrices in 

statistical process control, and as a distance metric which has some advantages over widely used 

norms (e.g. Frobenius/Euclidean, Chebyshev, and taxi norms).  The ‘distance’ here is a probability, 

not an absolute distance.  Norms do not recognize that an absolute distance means different things 

depending on the value of the particular correlation cell.  A shift of 0.01 from an original correlation 

value of 0.5 means something very different than the same shift from 0.98, and the p-value recognizes 

this, giving the ‘distance’ of a specified correlation matrix from an estimated one probabilistic meaning.

• Note that even in relatively small matrices (say, p=10x10) this probability becomes very small very 

quickly (e.g. p(p – 1)/2 = 45, and taking all cells as having 0.25 tail probabilities as an example, 

p-value = 0.25^45 = 8.07794E-28).  But because it is based on a simple product, we can take the log 

of the p-value by simply summing the individual logs (which for this example, ln(p-value) = –62.38).

• Because this is a monotonic transformation, the relative rankings of different correlation matrices 

compared to the estimated/observed one will be preserved.  And unlike norms, its scale is not 

dependent on sample size, although it is dependent on the dimension of the matrix, p.

• Comparisons of the empirical distribution of LNP to those of common norms are made below.

• For completeness, a norm is a distance metric defined as:

• Taxi, Frobenius/Euclidean, and Chebyshev norms correspond to m=1, 2, and ∞, respectively (with the 

latter → maximum[x]).

IV.2  New Results: General Conditions
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• Note that as the density of the angle distribution is bounded                   , the kernel must be 

appropriately reflected at the boundary via: (see Silverman, 1986)

• Both the Gaussian kernel and the Epanechnikov kernel have been tested extensively, along with 

three different bandwidth estimators, h, from Silverman (1986):  

• The Epanechnikov kernel with                                                          shows a slight performance edge, 

when comparing metrics of 3. vs. 4., across a wide range of settings, all else equal.  This is likely due 

to the fact that in many cases, its bounded sample space will more often avoid the angle boundaries.

• Bandwidths h typically are the most important issue when using kernels.  Here, for larger matrices 

(e.g. p=100x100), bandwidths need to be tightened by multiplying by a factor of 0.15 to avoid a slight 

drift in the density based on the large number of density estimations performed (i.e. p(p – 1)/2 = 

4950).  Multiplying by this factor for smaller matrices does not adversely affect the density estimation 

in any way, so this factor always is used.  For matrices much larger than p=100, a further tightening of 

this factor may be required.

IV.2  New Results: General Conditions
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• Limitations:  NAbC is relatively computationally intensive, but not prohibitively so.  On a commodity 

laptop with RAM=32GB but with no multi-threading, NAbC code processes a 100x100 matrix, with N 

samples = 10,000, in about 2.4 hours.  In a multithreaded environment, let alone one with more 

memory, NAbC could be applied on similarly non-small matrices in minutes.  

• Applying inverse probability transform sampling using the “C3” analytic quantile function derived 

herein for the specific case of the Gaussian identity matrix (no Step 3. data generated), a 100x100 

matrix with N samples = 10,000 takes under 25 minutes to run on the same laptop.

• Note, however, that once the angles distributions are generated in Step 3., then using Step 4. to 

obtain the correlation matrices for specified cdf's (‘quantile function’), or obtaining cdf matrices for 

specified correlation matrices, as well as the LNP=ln(p-value) values, is extremely fast.  For a 

100x100 matrix, generating 100 of each requires only about 2 minutes in total.

• We would argue that any disadvantage associated with NAbC not being purely ‘real time’ on non-

small matrices is outweighed by two factors: i. its generality – it can be applied under the most general 

conditions possible – and ii. its unmatched flexibility – it can be applied to ANY submatrix while 

holding all other correlation cells constant (this is discussed in the following sections).

• Another arguable limitation is that NAbC does not include estimation, only inference and scenarios, 

although the extant literature on estimation is very extensive.

• Aside from NAbC, we address both actual and perceived limitations in the use of Pearson’s product 

moment correlation matrix in a later section.

• Below, we now examine NAbC results from toy cases (p=5x5) as well as p=100x100 from some of the 

below-listed data generating mechansims (DGMs).  We focus on comparing results based on Step 3. 

vs. those based on Step 4.  Note that the angles graphs are meant to be toggled to more accurately 

see differences and similarities.

IV.2  New Results: General Conditions
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• We exhaustively test to ensure that Steps 3. and 4. are, in fact, the same distributions* by comparing:

• the angles distributions of 3. vs. 4.

• the spectral distributions of 3. vs. 4.

• the distributions of Euclidian/Frobenius (and other) norm(s) of 3. vs. 4.

• the distributions of LNP = ln(p-value) of 3. vs. 4.

• the risk (VaR-based aggregated loss / economic capital) distributions of 3. vs. 4.

• the mean empirical correlation matrices of 3. vs. 4.

• a scatterplot and Pearson’s correlation between LNP and the Euclidian/Frobenius norm (4.)

• Under the following data generating mechanisms (DGMs):

• MVU - Multivariate Uniform

• MVG - Multivariate Gaussian (Gaussian marginals)

• MVGM - Multivariate Gaussian (varying marginals)

• MVGTS - Serially correlated approximate Multivariate Gaussian

• MVT - Multivariate student’s t

• MVTM - Multivariate student’s t copula with varying marginals

• MVTV - Multivariate Asymmetric student’s t copula with varying degrees of freedom, varying 

marginals and varying asymmetry

• MVTVTS - Serially correlated approximate MVTV

• MVTVNS - Non-stationary approximate MVTVTS

• Archimedean Copulas (Gumbel, Frank, Clayton) with Lognormal(0,1) marginals.

• See Appendix 1 for graphical and tabular results.  A summary follows below.

IV.2  New Results: General Conditions

* Note that either 3. or 4. can be used here as “NAbC”: in fact, showing that they are distributionally identical validates this entire approach.  We would want 

to use 4. simply because sampling the empirical angles densities already generated in 3., by using 4., is much faster than re-simulating them via 3.
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• Empirical Results from NAbC – Notes (see APPENDIX 1 for Graphs/Tables):

• NOTE: All results show a comparison of Step 3. vs. Step 4. as validation of the latter EXCEPT Case A 

using the C3 quantile function (because no data is being simulated – the method is analytical).  

• Where noted results are for p=100x100, but otherwise, for illustrative purposes all are for p=5x5 

(sample size n=p+1, and n=126 for 6 months of trading days; for p=100, n=p+1 and n=252 for a year 

of trading days).  Kernel bandwidth h=“0.9” version of Silverman (1986) x 0.15.  Results include 

distributions of the angles, eigenvalues, Euclidian/Frobenius norm, LNP, square-root-rule elliptical 

aggregated ‘capital,’* and the differences between all the cells in the two empirical mean correlation 

matrices.  A scatterplot and Pearson’s correlation between LNP and the Euclidian/Frobenius norm 

also is presented.  All tables of matrices are presented in lower triangle column format.  The matrices 

include conversions from i. specified correlation matrices to cdf matrices**; ii. specified cdf matrices to 

unique correlation matrices; and iii. specified %CDF-shifts from the empirical mean matrix to 

correlation matrices (wherein each cell’s %shift is the percentage of the cumulative density above or 

below the cdf of the mean angle).  Finally, angle number is determined based on the following fill-

order (the motivation for this is discussed in a later section):

* Under multivariate ellipticity, extreme portfolio quantiles (aka Value-at-Risk, “VaR”, aka “Capital”) can be calculated asymptotically with the ‘square root 

rule,’ where                                                                                                                 (see Tao et al., 2019, and 

Frachot et al., 2001). While this does not hold under other distributions, its distribution under Step 3. still should be identical to that of Step 4., so they are 

presented for comparison purposes.  All 99VaR’s are set to $50m herein: when different marginals are used, they are scaled so that 99VaR = $50m.

portfolio VaR=Capital  where  = vector of  VaRs (quantiles) and correlation matrix of dimension tVRV V p R p= =

Rightmost Triangle Fill Order

** Note that the inverse relationship between angles cdf’s and correlation values

applies here: for the %CDF-shift tables, this has been reversed so that 

positive/negative  CDF shifts correspond with increases/decreases in correlation 

values.

IV.2  New Results: General Conditions
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• Empirical Results from NAbC – Example Cases (see APPENDIX 1 for Graphs/Tables):

A. C3 v MVG – Gaussian Identity Matrix: side-by-side comparison of use of fully analytic C3 quantile 

function (no data generation) vs. a multivariate gaussian data generating mechanism (n=6, n=126)

B. MVG with all ρ = 0.2 (n=6, n=126)

C. MVG with ρ = 0.4 for one cell (#5) v. ρ = 0.4 for one factor (row 4, cells 2,5,9) (n=6)

D. MVT (df=3) with all ρ = 0.2 (n=6, n=126)

E. MVTM – MVT (df=3) with different marginals (2 LN(0,1), 3 Gamma(1,1)), all ρ = 0.2 (n=6, n=126)

F. MVTVNS (ρ = block structure, df=3,4,5,6,7, skewness=1,0.6,0,-0.6,-1, autocorrelation=

-0.25,0,0.25,0.5,0.75, nonstationarity=3σ, σ/3, σ, n/3 each) (n=6, n=126)

G. MVTVNS (all ρ = 0.2, p=100x100, df=3 to 27.5 by 0.5, 

skewness=1 to -0.96 by 0.04, autocorrelation=0.68 to -0.3 by 0.02, 

nonstationarity=3σ, σ/3, σ, n/3 each) (n=101, n=252)

H. Gumbel Copula (ϕ = 1.25), as upper tail dependence is relevant in this setting, as is a test of a 

multivariate distribution whose construction does not directly rely on a specified correlation matrix 

(n=6, n=126)

IV.2  New Results: General Conditions
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• Empirical Results from NAbC – Summary (see APPENDIX 1 for Graphs/Tables):

• All results are distributionally identical for Steps 3. v 4., indicating validity in NAbC’s methodology.

• All spectral distributions for both 3. and 4. match those defined in the RMT literature (e.g. Marchenko-

Pastur distribution (Marchenko & Pastur, 1967) under the identity matrix, and otherwise where 

spectral distributions are derived analytically (e.g. tests not included herein were performed using Lillo 

& Mantegna, 2005, and Livan et al., 2011 as examples).  Also the effects of heavy-tailed distributions 

and serial correlation appear consistent with those of the RMT literature generally (see for the former 

Burda et al., 2004, Burda et al., 2006, Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & 

Potters, 2015, Martin & Mahoney, 2018; and for the latter, see Burda et al., 2004, 2011).

• The relationship between LNP and the Euclidian/Frobenius norm is consistent with the latter’s inability 

to distinguish between the RELATIVE distances from the estimated/given correlation matrix:  they are 

very similar under the Gaussian identity matrix (especially under larger sample sizes), where relative 

and absolute distances are more similar, but when the original correlation matrix is asymmetric or 

contains more extreme values, the strength of their association diminishes somewhat, as expected.  

• Note that the scale of the LNP distribution is not dependent on sample size, whereas that of the 

Euclidean/Frobenius and other norms do change with sample size.  The scales of both are functions 

of the dimension of the matrix.

• On tests not presented herein, LNP remains numerically robust even under p=100x100, and readily 

provides rankings of ‘distance’ for all specified correlation and cdf matrices.

IV.2  New Results: General Conditions
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• For completeness, we include the pdf of the Marchenko-Pastur (1967) distribution below:

• This analytic result overlays the empirical spectral distributions presented in the appendices.

• Note that exceptions to convergence to this celebrated distribution do exist (see Li and Yao (2018) for 

an example).
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• Empirical Results from NAbC – Summary (see APPENDIX 1 for Graphs/Tables):

• Case A: shows distributionally identical results when comparing those generated from 3. vs. those 

based on 4.  Also, NAbC applied to multivariate gaussian data yields distributionally identical results 

vs. probability inverse transform sampling using the analytic C3 quantile function derived herein, thus 

validating the latter empirically.

• Case B: shows identical results distributionally for 3. v 4., with the expected effects for sample size 

and for non-zero correlations on both the spectral and angles distributions.

• Case C: demonstrates how eigen-structure/decomposition approaches are too blunt a tool for 

analyzing correlation matrices.  We start with the identity matrix and examine the spectral distributions 

of two cases: one where an entire factor/row (cells 2, 5, and 9) is assigned ρ = 0.4 vs. one where only 

a single correlation cell (#5) gets ρ = 0.4.  Under small sample sizes (n=p+1) they look virtually the 

same.  The angles distributions, however, show the story very clearly, for each of the right cells, and 

the untouched zero cells show exact matches with both the defined pdf (sin^k) and the C3 analytic 

derivation.  As sample size increases, as expected, the spectral distributions can more readily be 

distinguished, but still do not provide the unambiguous story provided by the angles distributions.  

Note also how cell #1 (in row 5) is (unintentionally) affected by the changes of the factor 

corresponding to row 4 due to the rightmost cell-change rule described on pp. 47-49.  NAbC is the 

first method able to explicitly control that kind of unintended correlation ‘contamination.’

• Case D: shows the incremental effects of heavy tails, all else equal, compared to Case B.  NAbC still 

matches empirical ‘truth’ perfectly, by every distributional criteria.

• Case E: shows the incremental effects of different marginals, all else equal, compared to Case D. 

NAbC still matches empirical ‘truth’ perfectly, by every distributional criteria.

IV.2  New Results: General Conditions
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• Empirical Results from NAbC – Summary (see APPENDIX 1 for Graphs/Tables):

• Case F: shows a more ‘real world’ example (with a block correlation matrix) including heavy tails 

(varying by factor), skewness (varying by factor), autocorrelation (varying by factor), and 

nonstationarity.  We see, again, identical results distributionally for 3. v 4. across all comparison 

criteria.  Examination of both the spectral and angles distributions in this case shows complex 

structure, providing further evidence that deriving an ‘all-cases’ analytic density for either appears to 

be nontrivial.

• Case G: shows Case F. but for a non-toy matrix of p=100x100 and a constant correlation matrix with  

ρ = 0.2. Again, NAbC still matches empirical ‘truth’ perfectly, by every distributional criteria.

• Case H: shows a copula with upper tail dependence (Gumbel) that is constructed without use of, 

reference to, or knowledge of Pearson’s correlation matrix.  We see, again, identical results 

distributionally for 3. v 4. across all comparison criteria.

IV.2  New Results: General Conditions



© JD Opdyke   41 of 275

• Empirical Results from NAbC – Code:

• NOTE:  Complete SAS/IML (v9.4) code that generates the above results and many possible 

specifications for a wide range of input parameters, including input .csv files (e.g. the specified cdf

matrices, correlation matrices, %CDF-shift matrices, the baseline correlation matrices, eigenvalues for 

defining baseline correlation matrices, etc.) will be made publicly available for download on GitHub 

and in the forthcoming book, “The Correlation Matrix: Robust Inference and Fully Flexible Stress 

Testing and Scenarios for Financial Portfolios,” Elements in Quantitative Finance series, Cambridge 

University Press, eds. Ricardo Rebonato, PhD.

• The SAS/IML code has extensive functionality.  In addition to the optionality mentioned above, 

correlation matrices can be specified either as correlation matrices, or defined by eigenvalues (which 

are converted via Givens rotations a la Davies and Higham, 2000), matrix re-orderings for targeted 

submatrices can be specified as an input parameter (either as a list or in a .csv file), scales of axes on 

graphs and kernel bandwidths on the kernel-based graphs are input parameters, the number of 

angles graphs generated is a parameter, etc.

IV.2  New Results: General Conditions
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• NAbC is more robust than its competitors in several ways.  Why is this the case?

• Almost all of NAbC’s competitors, whether designed for stress testing or making inferences about an 

observed / estimated correlation matrix, focus on its eigen structure: either its spectral distribution (i.e. 

the distribution of its eigen values), or they explicitly manipulate its eigen decomposition (Archakov & 

Hansen (2021) is a notable exception).

• Unfortunately, in practice, the larger the matrix, the more likely it is to approach singularity, i.e. non-

positive definiteness (NPD). 

• So these ‘eigen’ approaches become only as good as the matrix is ‘far’ away from being NPD, which 

for most practical purposes of financial portfolio analysis, often is not very ‘far.’

• For example, Hardin et al. (2013) (responsibly) acknowledge that, in their eigen value perturbative 

approach, “The amount of noise that can be added to the original matrix is determined by its smallest 

eigenvalue.  … We provide the user with … a general algorithm to apply to any correlation matrix for 

which the smallest eigenvalue can be reasonably estimated.” (emphases added).  

• This constraint is true of these types of approaches generally, but it is seldom acknowledged.

• Unfortunately, this eliminates some of the most widely observed correlation matrices in finance –

those close to a ‘spiked’ covariance matrix (see Johnstone, 2001) where one or few eigenvalues 

dominate and the majority of eigenvalues are close to zero, i.e. not reliably estimated.

V.  NAbC: Robust Inference
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• Also, eigen approaches remain at the level of the factors in the portfolio (i.e. only p factors), NOT all 

the pairwise associations between these factors (i.e. p(p-1)/2 associations).  This is the wrong level of 

aggregation for flexibly analyzing the correlation matrix, cell-by-cell.  Using only p 

eigenvalues/vectors/factors simply is too blunt a tool for inference regarding all of their p(p-1)/2 

pairwise associations, at the level of the correlation cell.

• So while eigen decompositions can be indispensable for things like identifying non-random 

effects/factors in a portfolio, they are much less so when examining the correlation matrix per se.

V.  NAbC: Robust Inference
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• NAbC for Robust Inference:

• Structurally:  Level of aggregation becomes important here.  There are many more angles 

distributions than there are spectral distributions (i.e. p(p-1)/2 vs p, a factor of (p-1)/2 more).  As a 

matrix approaches NPD, a much smaller proportion of angles distributions will approach 

degeneracy than is true for eigenvalue distributions.  Consequently, the overall construction of the 

correlation matrix via                  will remain much more stable than one based on an eigen-

decomposition of                      where V is a matrix with column eigenvectors and 𝛬 is a diagonal 

matrix of the corresponding eigenvalues. 

• Empirically:  Even if an angle distribution approaches degeneracy, all its values will simply 

approach 0 or 𝛑.  But the trigonometric functions of these values are stable, and will simply 

approach 0 or 1.  This makes                a stable calculation empirically, even if it produces an R

that is approaching NPD.  Eigenvalue/vector estimations are more numerically involved and 

comparatively less stable as matrices approach NPD.

• Distributionally: The distributions of angles are well behaved: they are continuously differentiable 

(smooth), unimodal, and clearly bounded on                  .  Spectral distributions are unbounded (in 

the general case) and thus characterized by larger variances and less tail accuracy.  They also 

are more complex in the general case.

• All of this adds up to a more robust basis for inference when relying on the geometric framework of 

angles distributions as opposed to spectral distributions.  And for examination of the correlation matrix 

per se, spectral distributions simply are not at the right level of aggregation: they are 

indispensable for factor analysis, but utilizing the ‘eigen’ information on only p factors to analyze p(p-

1)/2 pairwise associations of those factors simply is too blunt a tool.

V.  NAbC: Robust Inference
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• Fully Flexible Stress Testing and Scenarios:

• Many approaches to stress testing perturb the underlying distributions to the correlation matrix (e.g. 

Kupiec, 1998; Ng et al., 2013; Zhang et al., 2015; Packham & Woebbeking, 2019), but this is not 

sufficient, just as it would not be sufficient for understanding the density of any other parameter in a 

portfolio model.

• It is important to reemphasize here that stressing the correlation matrix directly, as a model 

parameter, is not inconsistent in any way with concurrently stressing the other parameters in the 

model and/or the underlying marginal distributions.  The Bank for International Settlements (BIS)

recommends doing both concurrently.

• BIS-BCBS, 2011, pp. 28-29: “However, in order to calculate stressed VaR accurately it is also 

necessary to stress the correlation matrix used in all VaR methodologies. … In general, most 

correlations tend to increase during market crises, asymptotically approaching 1.0 during periods of 

complete meltdown, such as occurred in 1987, 1998 and 2008. …Certain methods that could be 

meaningful in this context can be identified in the earlier literature on stress testing. Employing fat-

tailed distributions for the risk factors and replacing the standard correlation matrix with a stressed 

one are two examples.” (emphasis added).

• Unfortunately, when it comes to stressing the correlation matrix directly, the literature proposes many 

methods that exhibit demonstrable inaccuracies and deficiencies, and unlike NAbC, none are based 

on probabilistic control over the individual correlation cells or the entire matrix, let alone both 

simultaneously.

VI. NAbC: Fully Flexible Stress Testing & Scenarios for ANY Submatrix
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• In a widely circulated paper, Galeeva et al. (2007) propose several approaches, one of which is 

perturbing the polar angles directly via:

“with the goal of generating random angles around the base angles with some distribution which is 

symmetric and centered around the base-correlation        [angle] for every i.j”

• This approach has several problems.  First, the choice of a Gaussian distribution here is arbitrary, and 

it is not proportional to the determinant of the Jacobian as described above (see Pourahmadi & Wang, 

2015).  We can immediately see that the proposed distribution is not a function of the angle’s column 

position in the matrix, which is the structure imposed by the determinant of the Jacobian.  Also, in the 

general case the distribution is, of course, not necessarily symmetric, and is often skewed.

• Another approach proposed by Galeeva et al. (2007) is to perturb the eigenvalues by the 

exponentiated Gaussian distribution (i.e. Lognormal), using the historical variances as parameters in 

the distribution.  Here the choice of the Lognormal is arbitrary, and simply does not work when 

matrices approach NPD: with eigenvalues ≈ 0, there is nothing to perturb.

• Other approaches proposed by Galeeva et al. (2007) (e.g. bootstrapping) simply do not preserve 

positive definiteness.  Neither does the approach proposed in So et al. (2013).

• Ho (2015) provides a approach using empirical likelihood to modify the probability weights of sample 

observations to construct a stress correlation matrix.  While this has advantages in its statistical 

interpretation (in the K-L divergence sense), non-parametric estimation, and straightforward 

computation, it does not provide the perfect control at the correlation cell level that NAbC provides.  

Neither does Loland et al., (2013).
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• Hardin et al. (2013) utilize a normalized vector of independent gaussian random variables to perturb 

the observed correlation matrix.  While relatively straightforward to implement, a nontrivial limitation is 

acknowledged by the authors:  “The amount of noise that can be added to the original matrix is 

determined by its smallest eigenvalue. … We provide the user with … a general algorithm to apply to 

any correlation matrix for which the smallest eigenvalue can be reasonably estimated.” (emphases 

added) 

• Unfortunately, this eliminates some of the most widely observed correlation matrices in finance –

those close to a ‘spiked’ covariance matrix (see Johnstone, 2001) where one or few eigenvalues 

dominate and the majority of eigenvalues are close to zero, i.e. not reliably estimated.

• The correlation parameterization of Packham and Woebbeking (2021) does not automatically enforce 

positive definiteness, and ‘nearest correlation’ enforcement adjustments (e.g. Higham, 2002) do 

systematically alter both the spectral and angles distributions.  It also relies on Fisher’s z-

transformation, which Taraldsen (2021) has shown to sometimes be inaccurate under extreme values.

• The market stress approach of Chmielowski (2014) is a notable exception to many of the limitations 

listed above as it remains is explicitly invariant under a change of basis of risk factors. Parlatore and 

Phillippon’s (2022) Kalman Filter approach in the same setting systematically and quantitatively 

incorporates correlation priors.  But both stop short of the granular, probabilistic control needed for 

fully flexible stress testing/scenarios.

• So none of these methods provide the highly granular, probabilistic control over the correlation matrix 

directly that is required for fully flexible stress and scenarios testing.  NAbC provides control at the 

correlation cell level, with the ability to specify scenarios for ANY submatrix of the correlation matrix 

while holding the rest of the values constant (e.g. for flexible use in models like Black-Litterman (1991) 

and its many variants), by combining two crucial findings (I. and II.) below. 

VI. NAbC: Fully Flexible Stress Testing & Scenarios for ANY Submatrix



© JD Opdyke   48 of 275

I. Pourahmadi and Wang (2015) and others show that both the marginal distributions of individual 

correlations in a correlation matrix, as well as the overall distribution of the entire correlation matrix, 

are invariant to the ordering of the rows and columns of the matrix.  Respectively, 

II. Additionally, focusing on the lower triangle, we observe that, based on                and equivalently,

changing an arbitrary angle in B only will change any correlations that are to its right in the same row, 

and under the diagonal in the corresponding column.*  Several examples are below.

TR BB=
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• Taking I. and II. together, we see that if we first reorder the correlation matrix so that only targeted 

cells are in the rightmost triangle of B, filling it in the numbered order of the matrix below, then no 

other cells in the matrix will be affected by changes in their values. 

• This means that we can specify ANY combination of cells in a matrix

and reorder the rows and columns accordingly so that only those 

correlations will be changed!

• For example, reordering the correlation matrix so that rows 1-6 are now 6-1 and columns 1-6 are now 

6-1, means that the original cells 1,2 and 2,3 and 1,3 and 3,4 are now in the rightmost triangle of the 

lower triangular matrix, in the fill order shown above, and changes to the corresponding cells in the 

angles matrix B will only change these same cells, after               , in the resulting correlation matrix 

(see below). 

Rightmost Triangle Fill Order

VI. NAbC: Fully Flexible Stress Testing & Scenarios for ANY Submatrix

TR BB=
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• Note that the targeted cells (green) do not have to be contiguous: ANY reordering of the correlation 

matrix can move ANY cells to the rightmost (lower)triangle submatrix (the last column doesn’t even 

have to be fully filled), at which point changes in these cells in the angles matrix will ONLY change 

these cells (orange) in the correlation matrix. 

• Changes to targeted cells WILL change other cells in the targeted submatrix (due to                ).  

HOWEVER, the ordering of the submatrix matters here, and can be exploited.  For example, if we 

want to change the 4 cells above, but subsequently want to perform ‘what if’ analyses on only one of 

those cells (e.g. cell 1,2) without changing the other three, we reorder the original correlation matrix to 

place that cell as the ‘first’ in the lower triangle of the B matrix, as shown.  Then, subsequent changes 

to it will not affect the other (orange) cells.  This ‘rightmost’ change rule is nested / hierarchical.

• This gives us complete control and full flexibility in specifying scenarios; specifically, we can 

define which correlation cells are affected by the scenario, and which remain completely 

‘untouched,’ all while automatically preserving positive definiteness.

Reorder Rows/Cols to Fill Rightmost Triangle 

with Targets According to Fill OrderDetermine Targeted Change Cells

Changes in Corresponding 

Angles Cells ONLY change 

Same in Resorted Matrix

TR BB=

VI. NAbC: Fully Flexible Stress Testing & Scenarios for ANY Submatrix
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• Yet one question remains: when implementing NAbC for targeted scenarios, what do we do with the 

correlation cells that we do not want to change?  To keep these cells ‘untouched,’ we must obtain the 

mean empirical correlation matrix from the simulations in Step 3., translate these to a matrix of angles, 

and then when sampling angles via nonparametric kernel in Step 4., simply insert these mean angles 

as constant values in each of the appropriate cells, across all N samples.  

• This way, when we convert sampled angles matrices back to correlation matrices in step 5., the 

correlation values in the ‘untouched’ cells will be their expected values,* and remain ‘untouched.’

• Using the mean angles in this way not only preserves the mean correlation values,* but also still 

enforces positive definiteness, since we used the ANGLES from the mean empirical correlation 

matrix, and not the mean empirical correlation matrix itself; thus, we remain on the unit hyper-

hemisphere, and remain positive definite.

• Note that other researchers have struggled with the issue of separating and isolating the effects of 

individual correlations without affecting others in the matrix. Ng et al. (2013) and Yu et al. (2014) 

identify this as changes in “peripheral” correlations due to changes in “core” correlations, and are not 

able to control it.  

• However, the simple method described above – reorder the correlation matrix as needed, and then 

only modify the corresponding angles in the lower triangular matrix while filling the ‘untouched’ cells 

with the mean-angle value constant – allows for perfect control over which correlations are perturbed, 

and which remain completely untouched, thus solving the problem.

• The spectral distributions of these submatrix scenarios appropriately reflect their selectively limited, 

yet still positive definite, perturbation, as shown below in empirical results.

VI. NAbC: Fully Flexible Stress Testing & Scenarios for ANY Submatrix

* Strictly from the perspective of the sampling distribution, the empirical mean correlation matrix is the right source to obtain the constant-valued angles.

Note, however, that the empirical mean matrix will not match the one specified in the model under non-elliptical data.  This non-preservation under non-

linear transformations is discussed below.  
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• Empirical Results from NAbC – Example Cases, Targeted Scenario versions (APPENDIX 2):

A. TS:  MVG – Gaussian Identity Matrix: Targeted Scenario with only first 5 (of 10) cells targeted 

(n=6, n=126)

F. TS: MVTVNS: Targeted Scenario with only first 5 (of 10) cells targeted

(ρ = block structure, df=3,4,5,6,7, skewness=1,0.6,0,-0.6,-1, autocorrelation=-0.25,0,0.25,0.5,0.75, 

nonstationarity=3σ, σ/3, σ, n/3 each) (n=6, n=126)

• Empirical Results from NAbC – Summary:

• Case A.TS: shows the effects of imposing targeted scenarios wherein only specified cells (cells 1-5) 

are allowed to vary.  Note that the tabular results show that the values of targeted cells are essentially 

identical to those of Case A., as they should be, while the non-targeted cells (cells 6-10) all remain 

untouched (see the spikes in these angles’ distributions, which are a constant value): they are the 

cdf’s/correlation values associated with the mean empirical correlation matrix (which will be the same 

as the specified one under elliptical data); yet all the simulated correlation matrices that result from 

converting the angles matrices to Cholesky factorizations to correlation matrices all are positive 

definite, as required, because we remain on the hyper hemisphere by sampling angles.

• Case F.TS: shows the same results as Case A.TS under more real world data conditions.  The 

relative effects of imposing a targeted scenario compared to Case F., the unconstrained case, are the 

same as those when Case A.TS is compared to Case A. 

1 -0.1 -0.1 0.2 0.2

-0.1 1 -0.1 0.2 0.2

-0.1 -0.1 1 0.2 0.2

0.2 0.2 0.2 1 0.5

0.2 0.2 0.2 0.5 1

Case F.TS: R =
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VII.  Considerations in Application

• Even as its long history (see Pearson, 1895) and widespread usage and accessibility inevitably has 

lead to its misuse and misunderstanding in some settings, Pearson’s product moment correlation, as 

the scaled variance-covariance matrix, remains fundamental and foundational, and it relevance and 

usage will remain ubiquitous.  However, misuses notwithstanding, we must always consider, as with 

any method, its proper range of application and potential limitations under various conditions to 

assess whether it is fit-for-purpose for answering particular research questions in particular settings.

• Linearity:

The widely held view that Pearson’s product moment correlation is only appropriate for measuring 

linear relationships is called a myth in recent research in an American Statistical Association journal. 

Van den Heuval & Zhan (2022) show, analytically, a number of cases where Pearson’s outperforms 

its rank-based counterparts (e.g. Spearman’s Rho and Kendall’s Tau) in terms of power for detecting 

nonlinear monotonic associations.  Conversely, they also show cases where the opposite is true for 

linear relationships.  They conclude that defining the conditions under which one measure of 

association is better than another is more complex than the literature would lead us to believe, and 

that rejecting Pearson’s correlation a priori for assessing anything but linear relationships would be ill-

advised:  “Pearson’s correlation coefficient should not be ruled out a priori for measuring nonlinear 

monotonic associations.…Our examples show that existing views on linear and monotonic 

associations are myths.”  Note also that even in methodological settings characterized as highly non-

linear, Pearson’s often can play a central role (e.g. “Pearson Correlation Coefficient-based 

performance enhancement of Vanilla Neural Network for Stock Trend Prediction,” Thakkar et al., 

2021), as it often does in investment strategies (see Zhang et al., 2022) where it can dominate 

numerous other measures of association.
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VII.  Considerations in Application

• Non-preservation under nonlinear transformations:  Unlike its rank-based counterparts, Pearson’s 

correlation is not preserved under nonlinear transformations.  For example, it is preserved in elliptical 

copulas (e.g. Gaussian and student’s t copulas, among others), but generally not non-elliptical 

copulas.  While it is sometimes possible to recover approximations of the original correlation values 

based on the pairwise empirical correlation values (see Channouf and L’Ecuyer, 2012), or generalize 

the two-sample problem with copulas with many parameters or using vine copulas (see Barbiero, 

2019), the latter is not straightforward and remains the topic of continuing research. 

• However, in many situations, it may not matter.  For example, if we specify a particular Pearson’s 

correlation for use in a non-elliptical copula (say, the asymmetric student’s t-copula with varying df of 

Church, 2012), and its estimation fits the data very well, then for practical usage, it may not matter that 

the actual Pearson’s correlation embedded in the model is not that specified as an input parameter.  

Conversely, if we were using this model to simulate data, the Pearson’s correlation matrix that we 

would estimate from the simulated data would be different from that specified as an input, but as long 

as it produced the required multivariate density, it would not adversely affect the analysis.  

• Still, lacking an analytical translation between true and empirical correlation matrices in the face of 

nonlinear transformations remains an important gap in the literature and a challenge for usage under 

many conditions.  In the interim, to address this the SAS/IML code accompanying this monograph and 

to be posted on GitHub automatically generates two sets of results: one where the ‘center’ matrix in 

the sampling density is the original, specified correlation matrix, and one where this ‘center’ is the 

empirical mean correlation matrix.  Under multivariate ellipticity, these two results are the same: 

deviations from ellipticity cause deviations in the two sets of results, and can actually be taken as a 

measure of departures from ellipticity.  The empirical correlation matrix forms the basis of the 

sampling distribution under general conditions, and these are the results provided in this presentation.
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VII.  Considerations in Application

• Tail Risk:  For assessing risk in financial portfolios, much focus is rightly placed on tail densities / 

dependence / co-movement, and less on the co-movement of the means (i.e. Pearson’s) of the 

marginal distributions.  It turns out, however, that under many conditions Pearson’s correlation plays a 

direct role here as well.  For elliptically distributed data, Hult and Lindskog (2002) show that the tail 

dependence coefficients are fully determined by only two things: the tail index, and Pearson’s 

correlation.  Similarly, Lauria et al. (2021) analytically define some tail coefficients exclusively in terms 

of Pearson’s correlation for some semi-heavy tailed distributions (e.g. elliptical Generalized 

Hyperbolic).  Similar to an argument one might make for using Pearson’s alongside its rank-based 

counterparts in light of Van den Heuval & Zhan’s (2022) findings, these works support the use of 

Pearson’s as an important component of portfolio risk analysis even when the focus is on an area, i.e

tail risk, that many would (wrongly) assume to be unrelated to Pearson’s.

• Any quantitative method has limitations and finite ranges of appropriate application.  Cavalierly using 

the most readily available methods, based solely on convenience and not critical vetting, as has been 

the case when Pearson’s is misused, is antithetical to applied, scientific research.  On the other hand, 

conveniently sweeping and overly restrictive pronouncements for or against their use even if –

perhaps especially if – they are based on commonly held beliefs can make oversights in applied 

research more obscured and insidious, if not necessarily more misleading and damaging in the long 

run.

• Pearson’s correlation matrix remains, at the very least, a foundational baseline.  Given the current 

state of the literature, for most serious portfolio analyses, failing to include a rigorous examination of 

its potential impacts, or those of its fraternal twin, the variance-covariance matrix, would be ill advised, 

even if the focus is on questions not obviously directly related to them.
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VIII.  Summary and Conclusions

• Using a geometric framework, we have developed and presented a method defining the sampling 

density for the Pearson’s product moment correlation matrix under the most general conditions 

possible: we need only the existence of the mean and the variance, and a positive definite matrix.  

• The only requirements for the Nonparametric Angles-based Correlations (NAbC) method are i. a well 

estimated or known/specified correlation matrix and ii. a well estimated or known/specified data 

generating mechanism.  Positive definiteness automatically is enforced on the hyper-hemisphere.

• Each unique matrix in the sampling density is associated, one-to-one, with a unique matrix of cdf’s of 

all the angle densities associated with all the correlation cells.  Given any (positive definite) matrix of 

the same dimensions, NAbC can provide the matrix of cdf's.  NAbC also provides the inverse ‘quantile 

function’: when given a matrix of cdf’s, it provides the unique, associated correlation matrix.

• Probabilities from the sampling density can be used as p-values for hypothesis tests and statistical 

process control; they also can be treated as a probabilistic distance metric with some advantages 

over norm-based distance metrics.

• Fully Flexible: NAbC can be applied to ANY selected cells forming ANY submatrix of the given 

correlation matrix, while holding all the ‘untouched’ cells constant, and still remain positive definite.

• This is required for fully flexible scenario specification, and not only can be used in views-based 

models like Black-Litterman (1991) and its variants, but also can augment and improve those views 

on the correlation matrix by quantifying them PROBABILISTICALLY.

• Robust: NAbC also is much more robust than eigen-structure approaches, remaining stable even as 

matrices approach singularity (where many approximations (e.g. Fisher Z-transform) breakdown).

• Scalable: Finally, the algorithm is scalable, providing non-prohibitive runtimes for non-small matrices 

(e.g. 100x100).
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• “All-cases” Analytic Angles Distribution:  Analogous to deriving the angles distribution (pdf, cdf, and 

analytic quantile function) under the Gaussian identity matrix as is done herein, deriving the “all 

cases” analytic solution, under all relevant conditions, not only would add great insight to this applied 

research, but also speed up implementation closer to ‘real time.’   This open problem appears to be 

nontrivial, if as similarly challenging as deriving the same for spectral distributions.

• Similar Research on Competing Measures:  Extending this analysis to Spearman’s Rho and Kendall’s 

Tau potentially would be extremely useful.  The latter already has been shown to have more extensive 

connections to Pearson’s correlation than previously thought (see Lindskog et al., 2003), and some 

recent results show similar (see Bandeira et al., 2017, and Li, Wang, and Li, 2021), but not identical 

(see Li, Wang, and Wang, 2021), behavior in their spectral distributions.

• Comparisons Against / Conjoint Usage with, Competing Methods:  Comparing NAbC, under wide-

ranging test conditions, to Hansen & Archakov (2021) and the Bayesian approaches of Lan et al. 

(2020) and Ghosh et al. (2020) likely would be a useful and insightful exercise.  The four approaches 

differ in notable ways, yet have some strong similarities: the two Bayesian approaches both adopt the 

hyperspherical geometric framework that forms the foundation for NAbC.  Perhaps using them in 

conjunction would be fruitful, as the limitations of each cited above may be the strengths of the other.  

This certainly appears to be the case for the evolutionary approach of Papenbrock et al. (2021).

• Statistical Process Monitoring:  While NAbC’s application to hypothesis testing is self-evident, it would 

be useful to see if the many statistical process control methods designed for monitoring the correlation 

and covariance matrices could make use of the NAbC sampling density, or if the latter could be used 

to validate results of the methods proposed in papers like Adegoke et al. (2022), Ajadi et al. (2021), 

Bours & Steland (2020), Wang et al. (2019), Choi and Shin (2021), and others like those reviewed in 

Ebadi et al. (2021).

IX.  Next Steps / Further Research
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• Empirical Results from NAbC – Notes:

• NOTE: All results show a comparison of Step 3. vs. Step 4. as validation of the latter EXCEPT Case A 

using the C3 quantile function (because no data is being simulated – the method is analytical).  

• Where noted results are for p=100x100, but otherwise, for illustrative purposes all are for p=5x5 

(sample size n=p+1, and n=126 for 6 months of trading days; for p=100, n=p+1 and n=252 for a year 

of trading days).  Kernel bandwidth h=“0.9” version of Silverman (1986) x 0.15.  Results include 

distributions of the angles, eigenvalues, Euclidian/Frobenius norm, LNP, square-root-rule elliptical 

aggregated ‘capital,’* and the differences between all the cells in the two empirical mean correlation 

matrices.  A scatterplot and Pearson’s correlation between LNP and the Euclidian/Frobenius norm 

also is presented.  All tables of matrices are presented in lower triangle column format.  The matrices 

include conversions from i. specified correlation matrices to cdf matrices**; ii. specified cdf matrices to 

unique correlation matrices; and iii. specified %CDF-shifts from the empirical mean matrix to 

correlation matrices (wherein each cell’s %shift is the percentage of the cumulative density above or 

below the cdf of the mean angle).  Finally, angle number is determined based on the following fill-

order (the motivation for this is discussed in a later section):

* Under multivariate ellipticity, extreme portfolio quantiles (aka Value-at-Risk, “VaR”, aka “Capital”) can be calculated asymptotically with the ‘square root 

rule,’ where                                                                                                                 (see Tao et al., 2019, and 

Frachot et al., 2001). While this does not hold under other distributions, its distribution under Step 3. still should be identical to that of Step 4., so they are 

presented for comparison purposes.  All 99VaR’s are set to $50m herein: when different marginals are used, they are scaled so that 99VaR = $50m.

portfolio VaR=Capital  where  = vector of  VaRs (quantiles) and correlation matrix of dimension tVRV V p R p= =

Rightmost Triangle Fill Order

** Note that the inverse relationship between angles cdf’s and correlation values

applies here: for the %CDF-shift tables, this has been reversed so that 

positive/negative  CDF shifts correspond with increases/decreases in correlation 

values.
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• Empirical Results from NAbC – Example Cases:

A. C3 v MVG – Gaussian Identity Matrix: side-by-side comparison of use of fully analytic C3 quantile 

function (no data generation) vs. a multivariate gaussian data generating mechanism (n=6, n=126)

B. MVG with all ρ = 0.2 (n=6, n=126)

C. MVG with ρ = 0.4 for one cell (#5) v. ρ = 0.4 for one factor (row 4, cells 2,5,9) (n=6)

D. MVT (df=3) with all ρ = 0.2 (n=6, n=126)

E. MVTM – MVT (df=3) with different marginals (2 LN(0,1), 3 Gamma(1,1)), all ρ = 0.2 (n=6, n=126)

F. MVTVNS (ρ = block structure, df=3,4,5,6,7, skewness=1,0.6,0,-0.6,-1, autocorrelation=

-0.25,0,0.25,0.5,0.75, nonstationarity=3σ, σ/3, σ, n/3 each) (n=6, n=126)

G. MVTVNS (all ρ = 0.2, p=100x100, df=3 to 27.5 by 0.5, 

skewness=1 to -0.96 by 0.04, autocorrelation=0.68 to -0.3 by 0.02, 

nonstationarity=3σ, σ/3, σ, n/3 each) (n=101, n=252)

H. Gumbel Copula (ϕ = 1.25), as upper tail dependence is relevant in this setting, as is a test of a 

multivariate distribution whose construction does not directly rely on a specified correlation matrix 

(n=6, n=126)

1 -0.1 -0.1 0.2 0.2

-0.1 1 -0.1 0.2 0.2

-0.1 -0.1 1 0.2 0.2

0.2 0.2 0.2 1 0.5

0.2 0.2 0.2 0.5 1

Case F.: R =
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• Empirical Results from NAbC – Summary:

• All results are distributionally identical for Steps 3. v 4., indicating validity in NAbC’s methodology.

• All spectral distributions for both 3. and 4. match those defined in the RMT literature (e.g. Marchenko-

Pastur distribution (Marchenko & Pastur, 1967) under the identity matrix, and otherwise where 

spectral distributions are derived analytically (e.g. tests not included herein were performed using Lillo 

& Mantegna, 2005, and Livan et al., 2011 as examples).  Also the effects of heavy-tailed distributions 

and serial correlation appear consistent with those of the RMT literature generally (see for the former 

Burda et al., 2004, Burda et al., 2006, Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & 

Potters, 2015, Martin & Mahoney, 2018; and for the latter, see Burda et al., 2004, 2011).

• The relationship between LNP and the Euclidian/Frobenius norm is consistent with the latter’s inability 

to distinguish between the RELATIVE distances from the estimated/given correlation matrix:  they are 

very similar under the Gaussian identity matrix (especially under larger sample sizes), where relative 

and absolute distances are more similar, but when the original correlation matrix is asymmetric or 

contains more extreme values, the strength of their association diminishes somewhat, as expected.  

• Note that the scale of the LNP distribution is not dependent on sample size, whereas that of the 

Euclidean/Frobenius and other norms do change with sample size.  The scales of both are functions 

of the dimension of the matrix.

• On tests not presented herein, LNP remains numerically robust even under p=100x100, and readily 

provides rankings of ‘distance’ for all specified correlation and cdf matrices.
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• For completeness, we include the pdf of the Marchenko-Pastur (1967) distribution below:

• This analytic result overlays the empirical spectral distributions presented in the appendices.

• Note that exceptions to convergence to this celebrated distribution do exist (see Li and Yao (2018) for 

an example).
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• Empirical Results from NAbC – Summary:

• Case A: shows distributionally identical results when comparing those generated from 3. vs. those 

based on 4.  Also, NAbC applied to multivariate gaussian data yields distributionally identical results 

vs. probability inverse transform sampling using the analytic C3 quantile function derived herein, thus 

validating the latter empirically.

• Case B: shows identical results distributionally for 3. v 4., with the expected effects for sample size 

and for non-zero correlations on both the spectral and angles distributions.

• Case C: demonstrates how eigen-structure/decomposition approaches are too blunt a tool for 

analyzing correlation matrices.  We start with the identity matrix and examine the spectral distributions 

of two cases: one where an entire factor/row (cells 2, 5, and 9) is assigned ρ = 0.4 vs. one where only 

a single correlation cell (#5) gets ρ = 0.4.  Under small sample sizes (n=p+1) they look virtually the 

same.  The angles distributions, however, show the story very clearly, for each of the right cells, and 

the untouched zero cells show exact matches with both the defined pdf (sin^k) and the C3 analytic 

derivation.  As sample size increases, as expected, the spectral distributions can more readily be 

distinguished, but still do not provide the unambiguous story provided by the angles distributions.  

Note also how cell #1 (in row 5) is (unintentionally) affected by the changes of the factor 

corresponding to row 4 due to the rightmost cell-change rule described on pp. 47-49.  NAbC is the 

first method able to explicitly control that kind of unintended correlation ‘contamination.’

• Case D: shows the incremental effects of heavy tails, all else equal, compared to Case B.  NAbC still 

matches empirical ‘truth’ perfectly, by every distributional criteria.

• Case E: shows the incremental effects of different marginals, all else equal, compared to Case D. 

NAbC still matches empirical ‘truth’ perfectly, by every distributional criteria.
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• Empirical Results from NAbC – Summary:

• Case F: shows a more ‘real world’ example (with a block correlation matrix) including heavy tails 

(varying by factor), skewness (varying by factor), autocorrelation (varying by factor), and 

nonstationarity.  We see, again, identical results distributionally for 3. v 4. across all comparison 

criteria.  Examination of both the spectral and angles distributions in this case shows complex 

structure, providing further evidence that deriving an ‘all-cases’ analytic density for either appears to 

be nontrivial.

• Case G: shows Case F. but for a non-toy matrix of p=100x100 and a constant correlation matrix with  

ρ = 0.2. Again, NAbC still matches empirical ‘truth’ perfectly, by every distributional criteria.

• Case H: shows a copula with upper tail dependence (Gumbel) that is constructed without use of, 

reference to, or knowledge of Pearson’s correlation matrix.  We see, again, identical results 

distributionally for 3. v 4. across all comparison criteria.
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• Empirical Results from NAbC – Code:

• NOTE:  Complete SAS/IML (v9.4) code that generates the above results and many possible 

specifications for a wide range of input parameters, including input .csv files (e.g. the specified cdf

matrices, correlation matrices, %CDF-shift matrices, the baseline correlation matrices, eigenvalues for 

defining baseline correlation matrices, etc.) will be made publicly available for download on GitHub 

and in the forthcoming book, “The Correlation Matrix: Robust Inference and Fully Flexible Stress 

Testing and Scenarios for Financial Portfolios,” Elements in Quantitative Finance series, Cambridge 

University Press, eds. Ricardo Rebonato, PhD.

• The SAS/IML code has extensive functionality.  In addition to the optionality mentioned above, 

correlation matrices can be specified either as correlation matrices, or defined by eigenvalues (which 

are converted via Givens rotations a la Davies and Higham, 2000), matrix re-orderings for targeted 

submatrices can be specified as an input parameter (either as a list or in a .csv file), scales of axes on 

graphs and kernel bandwidths on the kernel-based graphs are input parameters, the number of 

angles graphs generated is a parameter, etc.
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Elliptical Capital

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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Elliptical Capital

C3 (Analytic)                 Sample Size n = 126                 MVG Data
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Difference Between Mean Empirical Matrices

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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Difference Between Mean Empirical Matrices
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LNP

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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LNP
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Euclidian/Frobenius Norm

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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Euclidian/Frobenius Norm

C3 (Analytic)                    Sample Size n = 126                 MVG Data
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LNP v Euclidian/Frobenius Norm

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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LNP v Euclidian/Frobenius Norm

C3 (Analytic)                    Sample Size n = 126                 MVG Data
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Spectral Distributions

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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Spectral Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data
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Angle Distributions

C3 (Analytic)                  Sample Size n = 6                 MVG Data
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Angle Distributions
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Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   91 of 275

Angle Distributions

C3 (Analytic)                  Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   92 of 275

Angle Distributions

C3 (Analytic)                  Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   93 of 275

Angle Distributions

C3 (Analytic)                  Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   94 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   95 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   96 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   97 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   98 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A



© JD Opdyke   99 of 275

Angle Distributions

C3 (Analytic)                 Sample Size n = 126                 MVG Data
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1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.57 0.57 0.50 0.43 0.35 0.58 0.58

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.57 0.57 0.50 0.42 0.35 0.57 0.57

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.57 0.57 0.49 0.42 0.35 0.57 0.57

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.57 0.57 0.50 0.42 0.35 0.58 0.58

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.50 0.44 0.39 0.57 0.38 0.50 0.44 0.40 0.57 0.38

0 0.1 0.2 -0.1 0.2 0.50 0.44 0.39 0.57 0.38 0.49 0.44 0.39 0.57 0.37

0 0.1 0.2 -0.1 0.2 0.50 0.44 0.39 0.57 0.38 0.49 0.44 0.39 0.57 0.37

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.46 0.43 0.56 0.58 0.50 0.46 0.43 0.56 0.58

0 0.1 0.2 -0.1 -0.1 0.50 0.46 0.43 0.56 0.58 0.50 0.46 0.43 0.56 0.57

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.50 0.48 0.46 0.55 0.42 0.50 0.48 0.47 0.55 0.43

1 1 1 1 1

Correlation Matrices to CDF Matrices (n=6)

Correlation Matrices                        CDFs: C3 (Analytic)                           CDFs: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A
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Correlation Matrices to CDF Matrices (n=126)

Correlation Matrices                        CDFs: C3 (Analytic)                           CDFs: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.13 0.01 0.87 0.87 0.51 0.14 0.01 0.87 0.87

0 0.1 0.2 -0.1 -0.1 0.50 0.13 0.01 0.87 0.87 0.50 0.13 0.01 0.86 0.86

0 0.1 0.2 -0.1 -0.1 0.50 0.13 0.01 0.87 0.87 0.51 0.13 0.01 0.87 0.87

0 0.1 0.2 -0.1 -0.1 0.50 0.13 0.01 0.87 0.87 0.50 0.13 0.01 0.87 0.87

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.50 0.16 0.03 0.89 0.02 0.50 0.16 0.03 0.90 0.02

0 0.1 0.2 -0.1 0.2 0.50 0.16 0.03 0.89 0.02 0.50 0.15 0.03 0.89 0.01

0 0.1 0.2 -0.1 0.2 0.50 0.16 0.03 0.89 0.02 0.49 0.16 0.03 0.89 0.02

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.18 0.06 0.92 0.96 0.50 0.18 0.06 0.91 0.95

0 0.1 0.2 -0.1 -0.1 0.50 0.18 0.06 0.92 0.96 0.51 0.19 0.06 0.92 0.96

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.50 0.20 0.08 0.94 0.00 0.50 0.19 0.08 0.94 0.00

1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.13 0.20 -0.61 0.00 0.13 -0.13 0.20 -0.61

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.13 0.20 -0.61 0.00 0.13 -0.14 0.19 -0.60

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.13 0.20 -0.61 -0.01 0.12 -0.14 0.20 -0.61

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.13 0.20 -0.61 0.00 0.14 -0.13 0.21 -0.62

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.00 0.17 -0.14 -0.11 0.06 0.00 0.18 -0.14 -0.11 0.05

0.5 0.4 0.6 0.6 0.8 0.00 0.17 -0.14 -0.11 0.06 -0.01 0.16 -0.13 -0.11 0.06

0.5 0.4 0.6 0.6 0.8 0.00 0.17 -0.14 -0.11 0.06 -0.01 0.16 -0.14 -0.12 0.07

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.00 0.23 -0.15 0.25 0.71 0.00 0.24 -0.14 0.26 0.72

0.5 0.4 0.6 0.4 0.3 0.00 0.23 -0.15 0.25 0.71 0.00 0.23 -0.16 0.25 0.72

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.00 0.36 -0.20 -0.04 0.20 0.02 0.38 -0.17 -0.02 0.23

1 1 1 1 1 1 1 1 1 1

CDF Matrices to Correlation Matrices (n=6)

CDF Matrices                            Correlations: C3 (Analytic)                  Correlations: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.00 0.02 -0.02 0.03 -0.11 0.00 0.02 -0.02 0.04 -0.11

0.5 0.4 0.6 0.35 0.9 0.00 0.02 -0.02 0.03 -0.11 0.00 0.02 -0.02 0.03 -0.12

0.5 0.4 0.6 0.35 0.9 0.00 0.02 -0.02 0.03 -0.11 0.00 0.02 -0.02 0.04 -0.11

0.5 0.4 0.6 0.35 0.9 0.00 0.02 -0.02 0.03 -0.11 0.00 0.02 -0.02 0.03 -0.11

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.00 0.02 -0.02 -0.02 -0.06 0.00 0.02 -0.02 -0.02 -0.06

0.5 0.4 0.6 0.6 0.8 0.00 0.02 -0.02 -0.02 -0.06 0.00 0.02 -0.02 -0.02 -0.06

0.5 0.4 0.6 0.6 0.8 0.00 0.02 -0.02 -0.02 -0.06 0.00 0.02 -0.02 -0.02 -0.06

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.00 0.02 -0.02 0.02 0.07 0.00 0.02 -0.02 0.03 0.06

0.5 0.4 0.6 0.4 0.3 0.00 0.02 -0.02 0.02 0.07 0.00 0.03 -0.02 0.03 0.07

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.00 0.02 -0.02 -0.01 -0.12 0.00 0.02 -0.02 -0.01 -0.13

1 1 1 1 1 1 1 1 1 1

CDF Matrices to Correlation Matrices (n=126)

CDF Matrices                            Correlations: C3 (Analytic)                  Correlations: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A
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lnMatPr -2.231 -2.231 -6.931 -6.931 -12.799 -2.222 -2.241 -6.893 -6.970 -12.755

FNorm 0.899 0.654 2.308 1.160 3.040 0.907 0.638 2.322 1.160 3.045

Rnk_lnMatPr 1 1 3 3 5 1 2 3 4 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.13 -0.13 0.35 -0.35 0.43 0.13 -0.13 0.35 -0.35 0.43

20 -20 50 -50 60 0.13 -0.13 0.35 -0.35 0.43 0.13 -0.14 0.35 -0.34 0.42

20 -20 50 -50 60 0.13 -0.13 0.35 -0.35 0.43 0.12 -0.14 0.35 -0.35 0.43

20 -20 50 -50 60 0.13 -0.13 0.35 -0.35 0.43 0.14 -0.13 0.35 -0.35 0.42

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.17 -0.14 0.48 -0.23 0.66 0.18 -0.13 0.48 -0.24 0.67

20 -20 50 -50 70 0.17 -0.14 0.48 -0.23 0.66 0.17 -0.13 0.48 -0.24 0.66

20 -20 50 -50 70 0.17 -0.14 0.48 -0.23 0.66 0.17 -0.14 0.47 -0.24 0.65

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.23 -0.15 0.63 -0.10 0.89 0.24 -0.14 0.64 -0.10 0.90

20 -20 50 -50 80 0.23 -0.15 0.63 -0.10 0.89 0.24 -0.15 0.64 -0.10 0.90

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.36 -0.20 0.84 0.06 1.00 0.37 -0.18 0.84 0.07 1.00

1 1 1 1 1 1 1 1 1 1

CDF %Shift Matrices to Correlation Matrices (n=6)

CDF %Shift Matrices                 Correlations: C3 (Analytic)                  Correlations: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A
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lnMatPr -2.231 -2.231 -6.931 -6.931 -12.799 -2.233 -2.230 -6.938 -6.925 -12.881

FNorm 0.105 0.100 0.288 0.255 0.479 0.103 0.099 0.286 0.255 0.480

Rnk_lnMatPr 1 1 3 3 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.02 -0.02 0.06 -0.06 0.08 0.02 -0.02 0.06 -0.06 0.08

20 -20 50 -50 60 0.02 -0.02 0.06 -0.06 0.08 0.02 -0.02 0.06 -0.06 0.08

20 -20 50 -50 60 0.02 -0.02 0.06 -0.06 0.08 0.02 -0.02 0.06 -0.06 0.08

20 -20 50 -50 60 0.02 -0.02 0.06 -0.06 0.08 0.02 -0.02 0.06 -0.06 0.08

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.02 -0.02 0.06 -0.06 0.10 0.02 -0.02 0.06 -0.06 0.10

20 -20 50 -50 70 0.02 -0.02 0.06 -0.06 0.10 0.02 -0.02 0.06 -0.06 0.10

20 -20 50 -50 70 0.02 -0.02 0.06 -0.06 0.10 0.02 -0.02 0.06 -0.06 0.10

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.02 -0.02 0.07 -0.05 0.13 0.02 -0.02 0.07 -0.05 0.13

20 -20 50 -50 80 0.02 -0.02 0.07 -0.05 0.13 0.03 -0.02 0.07 -0.05 0.13

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.02 -0.02 0.07 -0.05 0.17 0.02 -0.02 0.07 -0.05 0.17

1 1 1 1 1 1 1 1 1 1

CDF %Shift Matrices to Correlation Matrices (n=126)

CDF %Shift Matrices                 Correlations: C3 (Analytic)                  Correlations: MVG Data

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case A
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Elliptical Capital

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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Difference Between Mean Empirical Matrices

n = 6                                                                            n = 126
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LNP

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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LNP v Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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Spectral Distributions

n = 6                                                                            n = 126
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Angle Distributions
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Angle Distributions

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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1 1 1 1 1

0 0.3 0.4 0.1 0.1 0.67 0.44 0.35 0.60 0.60 0.99 0.12 0.01 0.88 0.88

0 0.3 0.4 0.1 0.1 0.67 0.44 0.35 0.59 0.59 0.99 0.12 0.01 0.87 0.87

0 0.3 0.4 0.1 0.1 0.66 0.44 0.35 0.59 0.59 0.99 0.12 0.01 0.88 0.88

0 0.3 0.4 0.1 0.1 0.67 0.44 0.35 0.60 0.60 0.99 0.12 0.01 0.88 0.88

1 1 1 1 1

0 0.3 0.4 0.1 0.4 0.63 0.48 0.44 0.57 0.36 0.97 0.23 0.08 0.81 0.00

0 0.3 0.4 0.1 0.4 0.62 0.48 0.44 0.56 0.36 0.97 0.23 0.08 0.81 0.00

0 0.3 0.4 0.1 0.4 0.62 0.47 0.43 0.56 0.36 0.97 0.23 0.08 0.80 0.00

1 1 1 1 1

0 0.3 0.4 0.1 0.1 0.59 0.50 0.48 0.55 0.63 0.94 0.31 0.18 0.75 0.99

0 0.3 0.4 0.1 0.1 0.58 0.49 0.48 0.55 0.62 0.95 0.31 0.19 0.75 0.99

1 1 1 1 1

0 0.3 0.4 0.1 0.3 0.57 0.52 0.51 0.54 0.52 0.91 0.35 0.26 0.69 0.35

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.23 0.35 0.10 0.41 -0.44 0.20 0.22 0.18 0.24 0.09

0.5 0.4 0.6 0.35 0.9 0.22 0.35 0.09 0.41 -0.44 0.20 0.22 0.18 0.23 0.09

0.5 0.4 0.6 0.35 0.9 0.22 0.34 0.08 0.40 -0.44 0.20 0.22 0.18 0.24 0.09

0.5 0.4 0.6 0.35 0.9 0.22 0.35 0.09 0.41 -0.45 0.20 0.22 0.18 0.23 0.09

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.24 0.42 0.05 0.20 -0.07 0.20 0.23 0.17 0.19 0.10

0.5 0.4 0.6 0.6 0.8 0.23 0.42 0.04 0.19 -0.07 0.20 0.23 0.17 0.19 0.10

0.5 0.4 0.6 0.6 0.8 0.22 0.41 0.04 0.19 -0.07 0.20 0.23 0.17 0.19 0.10

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.25 0.51 -0.01 0.48 0.67 0.20 0.23 0.17 0.23 0.20

0.5 0.4 0.6 0.4 0.3 0.24 0.51 -0.02 0.47 0.67 0.20 0.24 0.17 0.23 0.20

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.30 0.65 -0.08 0.32 0.01 0.20 0.24 0.16 0.20 0.03

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B

CDF Matrices to Correlation Matrices

CDF Matrices                                                   n=6                                                   n=126
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lnMatPr -2.373 -2.092 -7.511 -6.385 -14.597 -2.261 -2.202 -7.050 -6.814 -13.154

FNorm 1.011 0.876 2.199 1.748 2.684 0.128 0.125 0.347 0.334 0.548

Rnk_lnMatPr 2 1 4 3 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.31 0.06 0.51 -0.16 0.58 0.22 0.18 0.26 0.14 0.27

20 -20 50 -50 60 0.31 0.06 0.51 -0.16 0.58 0.22 0.18 0.26 0.14 0.27

20 -20 50 -50 60 0.31 0.05 0.51 -0.16 0.58 0.22 0.18 0.26 0.14 0.27

20 -20 50 -50 60 0.31 0.05 0.51 -0.17 0.57 0.22 0.18 0.26 0.14 0.27

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.38 0.01 0.66 -0.22 0.80 0.23 0.17 0.28 0.13 0.31

20 -20 50 -50 70 0.38 0.01 0.66 -0.22 0.79 0.23 0.17 0.28 0.13 0.31

20 -20 50 -50 70 0.38 0.00 0.65 -0.23 0.79 0.23 0.17 0.28 0.12 0.31

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.47 -0.05 0.80 -0.25 0.95 0.23 0.17 0.29 0.11 0.35

20 -20 50 -50 80 0.46 -0.06 0.80 -0.25 0.95 0.23 0.17 0.29 0.11 0.36

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.59 -0.16 0.93 -0.26 1.00 0.24 0.16 0.31 0.10 0.41

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case B

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                                      n=6                                                   n=126
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Spectral Distributions

one factor = 0.4                       (n = 126)                       one cell = 0.4

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C



© JD Opdyke   126 of 275

Spectral Distributions

one factor = 0.4                         (n = 6)                         one cell = 0.4

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C
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Angle Distributions

one factor = 0.4                     (n = 6)                 one cell = 0.4
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Angle Distributions

one factor = 0.4                     (n = 6)                 one cell = 0.4

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C



© JD Opdyke   129 of 275

Angle Distributions

one factor = 0.4                     (n = 6)                 one cell = 0.4

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C



© JD Opdyke   130 of 275
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Angle Distributions
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Angle Distributions
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Angle Distributions

one factor = 0.4                     (n = 6)                 one cell = 0.4
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1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.58 0.58 0.50 0.43 0.35 0.58 0.58

0 0.1 0.2 -0.1 -0.1 0.50 0.42 0.35 0.57 0.57 0.50 0.42 0.35 0.57 0.57

0 0.1 0.2 -0.1 -0.1 0.81 0.76 0.69 0.86 0.86 0.50 0.42 0.35 0.57 0.57

0 0.1 0.2 -0.1 -0.1 0.50 0.43 0.35 0.58 0.58 0.50 0.42 0.35 0.58 0.58

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.50 0.44 0.40 0.57 0.38 0.50 0.44 0.40 0.57 0.38

0 0.1 0.2 -0.1 0.2 0.80 0.76 0.73 0.84 0.71 0.78 0.74 0.70 0.83 0.68

0 0.1 0.2 -0.1 0.2 0.49 0.44 0.39 0.57 0.37 0.49 0.44 0.39 0.57 0.37

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.80 0.77 0.74 0.84 0.84 0.50 0.46 0.43 0.56 0.58

0 0.1 0.2 -0.1 -0.1 0.50 0.46 0.43 0.56 0.57 0.50 0.46 0.43 0.56 0.57

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.79 0.77 0.75 0.82 0.73 0.50 0.48 0.47 0.55 0.43

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                            one factor = 0.4               (n = 6)           one cell = 0.4

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C



© JD Opdyke   138 of 275

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.13 0.20 -0.61 0.00 0.13 -0.13 0.20 -0.61

0.5 0.4 0.6 0.35 0.9 0.00 0.13 -0.14 0.19 -0.60 0.00 0.13 -0.14 0.19 -0.60

0.5 0.4 0.6 0.35 0.9 0.44 0.54 0.32 0.59 -0.22 0.00 0.13 -0.14 0.20 -0.61

0.5 0.4 0.6 0.35 0.9 0.00 0.14 -0.13 0.20 -0.62 0.00 0.14 -0.13 0.21 -0.62

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.00 0.18 -0.14 -0.11 0.05 0.00 0.18 -0.14 -0.11 0.05

0.5 0.4 0.6 0.6 0.8 0.45 0.58 0.31 0.41 0.14 0.46 0.58 0.33 0.35 0.34

0.5 0.4 0.6 0.6 0.8 -0.01 0.16 -0.14 -0.12 0.06 -0.01 0.16 -0.14 -0.12 0.07

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.45 0.61 0.27 0.57 0.67 0.00 0.28 -0.21 0.18 0.61

0.5 0.4 0.6 0.4 0.3 0.00 0.24 -0.15 0.26 0.72 0.00 0.23 -0.16 0.25 0.72

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.46 0.63 0.27 0.51 0.01 0.01 0.38 -0.24 -0.09 0.04

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C

CDF Matrices to Correlation Matrices

CDF Matrices                                        one factor = 0.4               (n = 6)           one cell = 0.4
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lnMatPr -2.434 -2.040 -7.821 -6.220 -14.443 -2.259 -2.205 -7.051 -6.830 -13.156

FNorm 0.806 0.698 1.905 1.512 2.478 0.936 0.698 2.273 1.229 2.936

Rnk_lnMatPr 2 1 4 3 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.13 -0.13 0.35 -0.35 0.43 0.13 -0.13 0.35 -0.35 0.43

20 -20 50 -50 60 0.13 -0.14 0.35 -0.34 0.42 0.13 -0.14 0.35 -0.34 0.42

20 -20 50 -50 60 0.49 0.25 0.65 0.05 0.70 0.13 -0.14 0.34 -0.35 0.42

20 -20 50 -50 60 0.13 -0.13 0.34 -0.35 0.42 0.14 -0.13 0.35 -0.35 0.42

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.18 -0.13 0.48 -0.24 0.67 0.18 -0.13 0.48 -0.24 0.67

20 -20 50 -50 70 0.53 0.23 0.73 0.01 0.82 0.52 0.26 0.73 0.12 0.84

20 -20 50 -50 70 0.17 -0.14 0.46 -0.24 0.65 0.17 -0.14 0.47 -0.24 0.65

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.58 0.19 0.80 -0.04 0.89 0.28 -0.20 0.67 -0.28 0.89

20 -20 50 -50 80 0.24 -0.15 0.64 -0.09 0.89 0.24 -0.15 0.64 -0.10 0.90

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.62 0.10 0.82 -0.16 0.89 0.38 -0.24 0.82 -0.10 0.96

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case C

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                           one factor = 0.4              (n = 6)            one cell = 0.4
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Elliptical Capital

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D

Difference Between Mean Empirical Matrices

n = 6                                                                            n = 126
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LNP

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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LNP v Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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Spectral Distributions

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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Angle Distributions

n = 6                                                                            n = 126
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Angle Distributions

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.64 0.58 0.52 0.69 0.69 0.86 0.72 0.51 0.94 0.94

0 0.1 0.2 -0.1 -0.1 0.64 0.58 0.52 0.69 0.69 0.87 0.72 0.50 0.94 0.94

0 0.1 0.2 -0.1 -0.1 0.64 0.58 0.52 0.69 0.69 0.87 0.72 0.51 0.94 0.94

0 0.1 0.2 -0.1 -0.1 0.64 0.58 0.52 0.69 0.69 0.87 0.72 0.51 0.94 0.94

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.61 0.56 0.52 0.66 0.51 0.83 0.68 0.51 0.94 0.45

0 0.1 0.2 -0.1 0.2 0.61 0.57 0.53 0.67 0.51 0.83 0.68 0.51 0.93 0.45

0 0.1 0.2 -0.1 0.2 0.61 0.56 0.52 0.66 0.51 0.83 0.68 0.50 0.93 0.44

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.58 0.55 0.52 0.64 0.65 0.80 0.65 0.50 0.93 0.95

0 0.1 0.2 -0.1 -0.1 0.59 0.55 0.52 0.64 0.65 0.81 0.65 0.51 0.94 0.95

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.56 0.54 0.52 0.60 0.48 0.78 0.62 0.50 0.94 0.22

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.23 0.38 0.06 0.46 -0.57 0.20 0.25 0.16 0.27 -0.04

0.5 0.4 0.6 0.35 0.9 0.24 0.40 0.06 0.47 -0.56 0.20 0.24 0.16 0.27 -0.04

0.5 0.4 0.6 0.35 0.9 0.23 0.38 0.07 0.46 -0.57 0.21 0.25 0.16 0.27 -0.03

0.5 0.4 0.6 0.35 0.9 0.23 0.38 0.06 0.45 -0.58 0.20 0.25 0.16 0.27 -0.03

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.25 0.48 0.02 0.22 0.04 0.21 0.26 0.15 0.19 0.02

0.5 0.4 0.6 0.6 0.8 0.25 0.47 0.03 0.23 0.05 0.20 0.26 0.15 0.19 0.03

0.5 0.4 0.6 0.6 0.8 0.25 0.47 0.02 0.22 0.05 0.20 0.26 0.15 0.19 0.02

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.27 0.57 -0.03 0.53 0.76 0.20 0.27 0.14 0.25 0.23

0.5 0.4 0.6 0.4 0.3 0.27 0.56 -0.03 0.53 0.77 0.21 0.27 0.14 0.26 0.23

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.29 0.69 -0.14 0.36 0.27 0.20 0.28 0.13 0.21 -0.10

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D

CDF Matrices to Correlation Matrices

CDF Matrices                                                   n=6                                                   n=126
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lnMatPr -2.395 -2.071 -7.602 -6.304 -14.832 -2.297 -2.167 -7.196 -6.675 -13.439

FNorm 1.175 1.010 2.478 1.800 2.910 0.253 0.237 0.679 0.625 1.058

Rnk_lnMatPr 2 1 4 3 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.34 0.01 0.58 -0.26 0.65 0.24 0.15 0.31 0.08 0.34

20 -20 50 -50 60 0.35 0.01 0.59 -0.25 0.66 0.24 0.15 0.31 0.08 0.34

20 -20 50 -50 60 0.34 0.02 0.58 -0.25 0.65 0.24 0.15 0.31 0.08 0.34

20 -20 50 -50 60 0.34 0.01 0.56 -0.26 0.65 0.24 0.16 0.31 0.08 0.34

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.42 -0.03 0.73 -0.24 0.86 0.25 0.14 0.35 0.06 0.42

20 -20 50 -50 70 0.42 -0.02 0.73 -0.24 0.86 0.25 0.14 0.35 0.06 0.42

20 -20 50 -50 70 0.41 -0.03 0.72 -0.24 0.85 0.25 0.14 0.35 0.05 0.42

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.50 -0.08 0.85 -0.19 0.97 0.26 0.13 0.37 0.04 0.49

20 -20 50 -50 80 0.49 -0.09 0.85 -0.21 0.97 0.26 0.14 0.38 0.04 0.50

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.62 -0.20 0.95 -0.12 1.00 0.27 0.13 0.40 0.02 0.59

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case D

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                                      n=6                                                   n=126
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Elliptical Capital

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E

Difference Between Mean Empirical Matrices

n = 6                                                                            n = 126
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LNP

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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LNP v Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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Spectral Distributions

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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Angle Distributions
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Angle Distributions

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.59 0.53 0.47 0.65 0.65 0.926 0.753 0.528 0.995 0.995

0 0.1 0.2 -0.1 -0.1 0.60 0.54 0.48 0.66 0.66 0.940 0.781 0.531 0.995 0.995

0 0.1 0.2 -0.1 -0.1 0.60 0.54 0.48 0.66 0.66 0.940 0.773 0.536 0.994 0.994

0 0.1 0.2 -0.1 -0.1 0.60 0.54 0.48 0.66 0.66 0.939 0.774 0.537 0.996 0.996

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.58 0.53 0.50 0.64 0.48 0.882 0.702 0.515 0.983 0.448

0 0.1 0.2 -0.1 0.2 0.59 0.54 0.50 0.65 0.48 0.886 0.706 0.512 0.984 0.445

0 0.1 0.2 -0.1 0.2 0.58 0.53 0.49 0.64 0.48 0.881 0.702 0.513 0.981 0.447

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.58 0.54 0.51 0.63 0.64 0.875 0.690 0.511 0.989 0.994

0 0.1 0.2 -0.1 -0.1 0.57 0.54 0.51 0.63 0.64 0.881 0.694 0.522 0.987 0.995

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.55 0.53 0.52 0.59 0.48 0.838 0.654 0.510 0.987 0.176

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.143 0.322 -0.023 0.413 -0.476 0.21 0.26 0.17 0.29 0.02

0.5 0.4 0.6 0.35 0.9 0.167 0.357 0.001 0.439 -0.481 0.21 0.25 0.17 0.28 0.03

0.5 0.4 0.6 0.35 0.9 0.166 0.331 -0.002 0.420 -0.483 0.21 0.26 0.17 0.28 0.03

0.5 0.4 0.6 0.35 0.9 0.162 0.332 -0.006 0.416 -0.483 0.21 0.26 0.17 0.28 0.03

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.176 0.422 -0.031 0.156 -0.073 0.21 0.26 0.16 0.20 0.05

0.5 0.4 0.6 0.6 0.8 0.184 0.422 -0.021 0.156 -0.073 0.21 0.26 0.16 0.20 0.05

0.5 0.4 0.6 0.6 0.8 0.169 0.414 -0.035 0.142 -0.065 0.21 0.26 0.16 0.20 0.05

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.204 0.511 -0.055 0.486 0.715 0.21 0.27 0.16 0.26 0.22

0.5 0.4 0.6 0.4 0.3 0.202 0.513 -0.060 0.488 0.725 0.21 0.27 0.16 0.26 0.22

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.247 0.660 -0.162 0.297 0.129 0.21 0.28 0.15 0.22 -0.02

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E

CDF Matrices to Correlation Matrices

CDF Matrices                                                   n=6                                                   n=126
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lnMatPr -2.251 -2.213 -7.009 -6.857 -13.451 -2.120 -2.345 -6.493 -7.395 -11.780

FNorm 1.187 1.020 2.581 1.765 3.018 0.230 0.234 0.631 0.581 0.963

Rnk_lnMatPr 2 1 4 3 5 1 2 3 4 5

Rnk_FNorm 2 1 4 3 5 1 2 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.3391 -0.0058 0.6174 -0.2381 0.7001 0.29 0.19 0.37 0.11 0.41

20 -20 50 -50 60 0.3618 0.0062 0.6119 -0.2357 0.6939 0.26 0.18 0.33 0.12 0.36

20 -20 50 -50 60 0.3313 -0.0007 0.6003 -0.2301 0.6825 0.26 0.18 0.33 0.11 0.36

20 -20 50 -50 60 0.3350 -0.0048 0.5921 -0.2456 0.6747 0.26 0.18 0.33 0.12 0.36

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.4210 -0.0356 0.7581 -0.2325 0.8854 0.28 0.17 0.37 0.09 0.44

20 -20 50 -50 70 0.4189 -0.0311 0.7609 -0.2329 0.8859 0.28 0.17 0.37 0.09 0.44

20 -20 50 -50 70 0.4131 -0.0385 0.7476 -0.2218 0.8791 0.28 0.17 0.37 0.09 0.44

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.4969 -0.0757 0.8594 -0.1942 0.9754 0.28 0.16 0.38 0.08 0.48

20 -20 50 -50 80 0.4903 -0.0825 0.8642 -0.2021 0.9764 0.28 0.17 0.38 0.08 0.48

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.6249 -0.2052 0.9549 -0.1897 0.9996 0.29 0.16 0.40 0.06 0.55

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case E

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                                      n=6                                                   n=126
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Elliptical Capital

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case F
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XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case F

Difference Between Mean Empirical Matrices

n = 6                                                                            n = 126
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LNP

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case F
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Euclidian/Frobenius Norm

n = 6                                                                            n = 126
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LNP v Euclidian/Frobenius Norm

n = 6                                                                            n = 126
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Spectral Distributions
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Angle Distributions
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Angle Distributions
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1 1 1 1 1

0.1 0.2 0.3 0.4 0.3 0.53 0.49 0.45 0.40 0.45 0.4376 0.2705 0.1422 0.0672 0.1422

0.1 0.2 0.3 0.4 0.3 0.39 0.34 0.30 0.26 0.30 0.1493 0.0518 0.0116 0.0014 0.0116

0.1 0.2 0.3 0.4 0.3 0.38 0.35 0.31 0.27 0.31 0.2696 0.1437 0.0601 0.0177 0.0601

0.1 0.2 0.3 0.4 0.3 0.36 0.32 0.29 0.25 0.29 0.2125 0.099 0.0353 0.0077 0.0353

1 1 1 1 1

0.1 0.2 0.3 0.4 0.4 0.46 0.44 0.41 0.39 0.37 0.206 0.0938 0.042 0.0184 0.0068

0.1 0.2 0.3 0.4 0.4 0.55 0.52 0.50 0.48 0.46 0.5734 0.4045 0.2671 0.169 0.0922

0.1 0.2 0.3 0.4 0.4 0.52 0.50 0.47 0.46 0.44 0.4607 0.2918 0.1656 0.0941 0.0426

1 1 1 1 1

0.1 0.2 0.3 0.4 0.1 0.67 0.65 0.64 0.63 0.72 0.9824 0.953 0.9189 0.8742 0.9996

0.1 0.2 0.3 0.4 0.1 0.63 0.61 0.60 0.59 0.69 0.9535 0.8954 0.8262 0.7569 0.9996

1 1 1 1 1

0.1 0.2 0.3 0.4 0.2 0.68 0.67 0.67 0.66 0.70 0.9978 0.9939 0.9902 0.986 0.9995

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                                       n=6                                                   n=126
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.18 0.40 -0.07 0.52 -0.80 0.07 0.12 0.01 0.15 -0.20

0.5 0.4 0.6 0.35 0.9 -0.17 0.07 -0.40 0.19 -0.87 -0.09 -0.05 -0.14 -0.02 -0.32

0.5 0.4 0.6 0.35 0.9 -0.18 0.06 -0.41 0.20 -0.88 -0.05 0.02 -0.11 0.05 -0.41

0.5 0.4 0.6 0.35 0.9 -0.25 -0.01 -0.47 0.12 -0.89 -0.09 -0.02 -0.14 0.01 -0.43

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 -0.04 0.27 -0.24 -0.15 0.48 -0.05 -0.01 -0.08 -0.08 -0.10

0.5 0.4 0.6 0.6 0.8 0.19 0.47 -0.01 0.06 0.53 0.12 0.17 0.08 0.08 0.06

0.5 0.4 0.6 0.6 0.8 0.11 0.40 -0.09 -0.05 0.53 0.07 0.11 0.03 0.03 0.02

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.56 0.75 0.43 0.72 0.98 0.37 0.40 0.35 0.39 0.51

0.5 0.4 0.6 0.4 0.3 0.49 0.70 0.37 0.69 0.98 0.31 0.34 0.29 0.34 0.47

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.81 0.94 0.58 0.81 0.93 0.55 0.59 0.52 0.55 0.50

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case F

CDF Matrices to Correlation Matrices
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lnMatPr -2.369 -2.101 -7.529 -6.449 -14.780 -2.292 -2.175 -7.204 -6.731 -12.865

FNorm 1.297 0.935 2.820 1.632 3.266 0.218 0.190 0.593 0.500 0.847

Rnk_lnMatPr 2 1 4 3 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.364 -0.129 0.670 -0.494 0.749 0.13 0.02 0.22 -0.07 0.25

20 -20 50 -50 60 0.118 -0.355 0.459 -0.644 0.572 -0.05 -0.14 0.03 -0.22 0.06

20 -20 50 -50 60 0.129 -0.357 0.502 -0.656 0.616 0.00 -0.13 0.10 -0.24 0.14

20 -20 50 -50 60 0.081 -0.390 0.458 -0.685 0.594 -0.04 -0.16 0.07 -0.27 0.10

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.283 -0.234 0.723 -0.119 0.864 -0.01 -0.09 0.07 -0.14 0.13

20 -20 50 -50 70 0.396 -0.125 0.804 -0.052 0.913 0.14 0.05 0.24 -0.01 0.31

20 -20 50 -50 70 0.349 -0.177 0.766 -0.048 0.900 0.09 0.00 0.18 -0.04 0.25

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.655 0.236 0.934 0.498 0.987 0.40 0.35 0.46 0.33 0.54

20 -20 50 -50 80 0.617 0.215 0.922 0.522 0.988 0.35 0.30 0.41 0.28 0.48

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.880 0.307 0.992 0.551 0.999 0.60 0.53 0.67 0.49 0.77

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case F

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                                      n=6                                                   n=126
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Elliptical Capital

n = 101                                                                          n = 252

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G
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XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G

Difference Between Mean Empirical Matrices

n = 101                                                                          n = 252
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LNP

n = 101                                                                          n = 252

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G
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Euclidian/Frobenius Norm

n = 101                                                                          n = 252

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G
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LNP v Euclidian/Frobenius Norm

n = 101                                                                          n = 252

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G
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Spectral Distributions

n = 101                                                                          n = 252

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case G
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Angle Distributions
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Angle Distributions

n = 101                                                                          n = 252
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Elliptical Capital

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H
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XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H

Difference Between Mean Empirical Matrices

n = 6                                                                            n = 126
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LNP

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H
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Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H
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LNP v Euclidian/Frobenius Norm

n = 6                                                                            n = 126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H



© JD Opdyke   223 of 275

Spectral Distributions

n = 6                                                                            n = 126
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Angle Distributions
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Angle Distributions

n = 6                                                                            n = 126
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1 1 1 1 1

0 0.1 0.2 0.55 0.6 0.69 0.64 0.58 0.35 0.32 0.9980 0.9693 0.8607 0.1698 0.1173

0 0.1 0.2 0.55 0.6 0.70 0.63 0.57 0.35 0.32 0.9979 0.9706 0.8614 0.1766 0.1199

0 0.1 0.2 0.55 0.6 0.70 0.63 0.57 0.35 0.32 0.9985 0.9728 0.8620 0.1744 0.1194

0 0.1 0.2 0.55 0.6 0.69 0.63 0.56 0.35 0.32 0.9988 0.9715 0.8625 0.1735 0.1206

1 1 1 1 1

0 0.1 0.2 0.55 0.3 0.63 0.57 0.53 0.42 0.68 0.9897 0.9207 0.7681 0.2606 0.9997

0 0.1 0.2 0.55 0.3 0.63 0.57 0.53 0.42 0.68 0.9887 0.9177 0.7701 0.2656 0.9998

0 0.1 0.2 0.55 0.3 0.62 0.57 0.53 0.42 0.67 0.9895 0.9184 0.7621 0.2647 0.9997

1 1 1 1 1

0 0.1 0.2 0.55 0.6 0.60 0.56 0.53 0.47 0.42 0.9721 0.8485 0.6819 0.3200 0.1070

0 0.1 0.2 0.55 0.6 0.59 0.55 0.52 0.47 0.41 0.9699 0.8450 0.6800 0.3138 0.1069

1 1 1 1 1

0 0.1 0.2 0.55 0.4 0.57 0.54 0.53 0.50 0.59 0.9447 0.7838 0.6334 0.3550 0.9959

1 1 1 1 1

Correlation Matrices to CDF Matrices

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.32 0.48 0.16 0.55 -0.36 0.37 0.42 0.33 0.44 0.17

0.5 0.4 0.6 0.35 0.9 0.32 0.47 0.16 0.55 -0.36 0.37 0.42 0.33 0.44 0.17

0.5 0.4 0.6 0.35 0.9 0.32 0.48 0.15 0.55 -0.36 0.37 0.42 0.33 0.44 0.18

0.5 0.4 0.6 0.35 0.9 0.31 0.47 0.15 0.55 -0.36 0.37 0.42 0.33 0.44 0.17

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.29 0.52 0.07 0.34 -0.14 0.36 0.42 0.31 0.38 0.18

0.5 0.4 0.6 0.6 0.8 0.29 0.53 0.07 0.34 -0.14 0.37 0.42 0.31 0.38 0.18

0.5 0.4 0.6 0.6 0.8 0.29 0.52 0.06 0.33 -0.14 0.36 0.42 0.31 0.38 0.18

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.32 0.61 0.03 0.59 0.68 0.36 0.42 0.30 0.42 0.31

0.5 0.4 0.6 0.4 0.3 0.30 0.60 0.00 0.58 0.68 0.36 0.42 0.30 0.41 0.31

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.35 0.73 -0.09 0.45 -0.01 0.35 0.43 0.29 0.39 0.12

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H

CDF Matrices to Correlation Matrices

CDF Matrices                                                   n=6                                                   n=126



© JD Opdyke   236 of 275

lnMatPr -2.279 -2.185 -7.124 -6.748 -13.519 -2.008 -2.460 -6.069 -7.882 -10.321

FNorm 1.103 1.096 2.303 2.172 2.661 0.234 0.263 0.649 0.649 0.950

Rnk_lnMatPr 2 1 4 3 5 1 2 3 4 5

Rnk_FNorm 2 1 4 3 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.46 0.13 0.69 -0.10 0.76 0.43 0.34 0.51 0.27 0.54

20 -20 50 -50 60 0.45 0.13 0.69 -0.10 0.76 0.43 0.34 0.51 0.27 0.54

20 -20 50 -50 60 0.45 0.13 0.68 -0.11 0.76 0.43 0.34 0.51 0.26 0.54

20 -20 50 -50 60 0.45 0.12 0.68 -0.11 0.76 0.43 0.34 0.51 0.27 0.54

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.51 0.07 0.81 -0.20 0.91 0.44 0.33 0.53 0.24 0.59

20 -20 50 -50 70 0.52 0.07 0.81 -0.19 0.91 0.44 0.33 0.53 0.24 0.59

20 -20 50 -50 70 0.51 0.05 0.81 -0.21 0.91 0.44 0.33 0.53 0.24 0.59

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.59 0.01 0.90 -0.26 0.98 0.45 0.32 0.55 0.22 0.64

20 -20 50 -50 80 0.59 0.00 0.90 -0.27 0.98 0.45 0.32 0.55 0.22 0.64

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.70 -0.14 0.97 -0.34 1.00 0.45 0.31 0.57 0.20 0.70

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 1:  Empirical Results of NAbC, Full Matrix – Case H

CDF %Shift Matrices to Correlation Matrices

CDF %Shift Matrices                                      n=6                                                   n=126
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• Empirical Results from NAbC – Example Cases, Targeted Scenario versions:

A. TS:  MVG – Gaussian Identity Matrix: Targeted Scenario with only first 5 (of 10) cells targeted 

(n=6, n=126)

F. TS: MVTVNS: Targeted Scenario with only first 5 (of 10) cells targeted

(ρ = block structure, df=3,4,5,6,7, skewness=1,0.6,0,-0.6,-1, autocorrelation=-0.25,0,0.25,0.5,0.75, 

nonstationarity=3σ, σ/3, σ, n/3 each) (n=6, n=126)

• Empirical Results from NAbC – Summary:

• Case A.TS: shows the effects of imposing targeted scenarios wherein only specified cells (cells 1-5) 

are allowed to vary.  Note that the tabular results show that the values of targeted cells are essentially 

identical to those of Case A., as they should be, while the non-targeted cells (cells 6-10) all remain 

untouched (see the spikes in these angles’ distributions, which are a constant value): they are the 

cdf’s/correlation values associated with the mean empirical correlation matrix (which will be the same 

as the specified one under elliptical data); yet all the simulated correlation matrices that result from 

converting the angles matrices to Cholesky factorizations to correlation matrices all are positive 

definite, as required, because we remain on the hyper hemisphere by sampling angles.

• Case F.TS: shows the same results as Case A.TS under more real world data conditions.  The 

relative effects of imposing a targeted scenario compared to Case F., the unconstrained case, are the 

same as those when Case A.TS is compared to Case A. 

1 -0.1 -0.1 0.2 0.2

-0.1 1 -0.1 0.2 0.2

-0.1 -0.1 1 0.2 0.2

0.2 0.2 0.2 1 0.5

0.2 0.2 0.2 0.5 1

Case F.TS: R =

XI. APPENDIX 2:  Empirical Results of NAbC, Targeted Scenario Matrix
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Elliptical Capital – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS

Difference Between Mean Empirical Matrices – Both Targeted Scenario

n = 6                                                                            n = 126
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LNP – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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Euclidian/Frobenius Norm – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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LNP v Euclidian/Frobenius Norm – Both Targeted Scenario

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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Spectral Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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Angle Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.50 0.50 0.50 0.50 0.503 0.503 0.503 0.503 0.503

0 0.1 0.2 -0.1 -0.1 0.50 0.50 0.50 0.50 0.50 0.499 0.499 0.499 0.499 0.499

0 0.1 0.2 -0.1 -0.1 0.50 0.50 0.50 0.50 0.50 0.501 0.501 0.501 0.501 0.501

0 0.1 0.2 -0.1 -0.1 0.50 0.50 0.50 0.50 0.50 0.501 0.501 0.501 0.501 0.501

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.50 0.44 0.40 0.57 0.38 0.496 0.156 0.032 0.896 0.015

0 0.1 0.2 -0.1 0.2 0.49 0.44 0.39 0.57 0.37 0.500 0.151 0.029 0.892 0.015

0 0.1 0.2 -0.1 0.2 0.50 0.50 0.50 0.50 0.50 0.494 0.494 0.494 0.494 0.494

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.50 0.46 0.43 0.56 0.58 0.502 0.176 0.055 0.915 0.953

0 0.1 0.2 -0.1 -0.1 0.50 0.46 0.43 0.56 0.57 0.508 0.186 0.056 0.920 0.956

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.50 0.48 0.47 0.55 0.43 0.496 0.193 0.084 0.939 0.003

1 1 1 1 1

Correlation Matrices to CDF Matrices – Both Targeted Scenario

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.00129 0.00129 0.00129 0.00129 0.00129 0.00138 0.00138 0.00138 0.00138 0.00138

0.5 0.4 0.6 0.35 0.9 -0.00062 -0.00062 -0.00062 -0.00062 -0.00062 0.00002 0.00002 0.00002 0.00002 0.00002

0.5 0.4 0.6 0.35 0.9 -0.00438 -0.00438 -0.00438 -0.00438 -0.00438 0.00156 0.00156 0.00156 0.00156 0.00156

0.5 0.4 0.6 0.35 0.9 -0.00175 -0.00175 -0.00175 -0.00175 -0.00175 0.00023 0.00023 0.00023 0.00023 0.00023

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 0.00032 0.16523 -0.15568 -0.15568 -0.49259 -0.00113 0.02137 -0.02326 -0.02326 -0.07492

0.5 0.4 0.6 0.6 0.8 -0.01012 0.14603 -0.15493 -0.15493 -0.49518 -0.00004 0.02195 -0.02142 -0.02142 -0.07445

0.5 0.4 0.6 0.6 0.8 -0.00599 -0.00599 -0.00599 -0.00599 -0.00599 -0.00083 -0.00083 -0.00083 -0.00083 -0.00083

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.00004 0.22686 -0.16786 0.22690 0.55471 0.00026 0.02398 -0.02178 0.02401 0.05183

0.5 0.4 0.6 0.4 0.3 -0.00484 0.19668 -0.20375 0.19891 0.36323 0.00173 0.02512 -0.02207 0.02515 0.04911

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.01793 0.34785 -0.21883 -0.08378 -0.56057 -0.00120 0.02173 -0.02471 -0.01286 -0.14962

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS

CDF Matrices to Correlation Matrices – Both Targeted Scenario

CDF Matrices                                                   n=6                                                   n=126
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lnMatPr -2.222 -2.241 -6.893 -6.970 -12.755 -2.233 -2.230 -6.938 -6.925 -12.881

FNorm 0.717 0.584 1.674 1.156 2.241 0.073 0.072 0.195 0.187 0.378

Rnk_lnMatPr 1 2 3 4 5 2 1 4 3 5

Rnk_FNorm 2 1 4 3 5 2 1 4 3 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.0013 0.0013 0.0013 0.0013 0.0013 0.00138 0.00138 0.00138 0.00138 0.00138

20 -20 50 -50 60 -0.0006 -0.0006 -0.0006 -0.0006 -0.0006 0.00002 0.00002 0.00002 0.00002 0.00002

20 -20 50 -50 60 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 0.00156 0.00156 0.00156 0.00156 0.00156

20 -20 50 -50 60 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 0.00023 0.00023 0.00023 0.00023 0.00023

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.1698 -0.1509 0.4105 -0.4035 0.5916 0.02242 -0.02225 0.06101 -0.05946 0.09345

20 -20 50 -50 70 0.1517 -0.1495 0.4049 -0.4066 0.5885 0.02188 -0.02150 0.05874 -0.05964 0.09178

20 -20 50 -50 70 -0.0060 -0.0060 -0.0060 -0.0060 -0.0060 -0.00083 -0.00083 -0.00083 -0.00083 -0.00083

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.2325 -0.1663 0.5953 -0.2490 0.8728 0.02348 -0.02251 0.06302 -0.05724 0.12099

20 -20 50 -50 80 0.2028 -0.1972 0.4656 -0.4548 0.6567 0.02469 -0.02254 0.06181 -0.06089 0.11648

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.3405 -0.2326 0.7159 -0.2490 0.8010 0.02112 -0.02547 0.06286 -0.06024 0.15955

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case A.TS

CDF %Shift Matrices to Correlation Matrices – Both Targeted Scenario

CDF %Shift Matrices                                      n=6                                                   n=126
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Elliptical Capital – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126
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XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS

Difference Between Mean Empirical Matrices – Both Targeted Scenario

n = 6                                                                            n = 126



© JD Opdyke   259 of 275

LNP – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126
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Euclidian/Frobenius Norm – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS
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LNP v Euclidian/Frobenius Norm – Both Targeted Scenario

n = 6                                                                            n = 126
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Spectral Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126
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Angle Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained
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Angle Distributions – Targeted Scenario v Unconstrained

n = 6                                                                            n = 126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS



© JD Opdyke   273 of 275

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.53 0.53 0.53 0.53 0.53 0.4874 0.4874 0.4874 0.4874 0.4874

0 0.1 0.2 -0.1 -0.1 0.47 0.47 0.47 0.47 0.47 0.5024 0.5024 0.5024 0.5024 0.5024

0 0.1 0.2 -0.1 -0.1 0.47 0.47 0.47 0.47 0.47 0.5326 0.5326 0.5326 0.5326 0.5326

0 0.1 0.2 -0.1 -0.1 0.46 0.46 0.46 0.46 0.46 0.5263 0.5263 0.5263 0.5263 0.5263

1 1 1 1 1

0 0.1 0.2 -0.1 0.2 0.46 0.44 0.41 0.39 0.37 0.206 0.0938 0.042 0.0184 0.0068

0 0.1 0.2 -0.1 0.2 0.55 0.52 0.50 0.48 0.46 0.5734 0.4045 0.2671 0.169 0.0922

0 0.1 0.2 -0.1 0.2 0.55 0.55 0.55 0.55 0.55 0.5677 0.5677 0.5677 0.5677 0.5677

1 1 1 1 1

0 0.1 0.2 -0.1 -0.1 0.67 0.65 0.64 0.63 0.72 0.9824 0.953 0.9189 0.8742 0.9996

0 0.1 0.2 -0.1 -0.1 0.63 0.61 0.60 0.59 0.69 0.9535 0.8954 0.8262 0.7569 0.9996

1 1 1 1 1

0 0.1 0.2 -0.1 0.3 0.68 0.67 0.67 0.66 0.70 0.9978 0.9939 0.9902 0.986 0.9995

1 1 1 1 1

Correlation Matrices to CDF Matrices – Both Targeted Scenario

Correlation Matrices                                       n=6                                                   n=126

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS
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1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.35 0.9 0.10 0.10 0.10 0.10 0.10 0.07 0.07 0.07 0.07 0.07

0.5 0.4 0.6 0.35 0.9 -0.11 -0.11 -0.11 -0.11 -0.11 -0.09 -0.09 -0.09 -0.09 -0.09

0.5 0.4 0.6 0.35 0.9 -0.11 -0.11 -0.11 -0.11 -0.11 -0.07 -0.07 -0.07 -0.07 -0.07

0.5 0.4 0.6 0.35 0.9 -0.15 -0.15 -0.15 -0.15 -0.15 -0.10 -0.10 -0.10 -0.10 -0.10

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.6 0.8 -0.03 0.25 -0.30 -0.30 -0.74 -0.05 -0.01 -0.09 -0.09 -0.18

0.5 0.4 0.6 0.6 0.8 0.22 0.47 -0.06 -0.06 -0.63 0.12 0.16 0.07 0.07 -0.04

0.5 0.4 0.6 0.6 0.8 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.04 0.04 0.04

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.4 0.3 0.55 0.75 0.32 0.72 0.91 0.37 0.40 0.34 0.40 0.44

0.5 0.4 0.6 0.4 0.3 0.49 0.67 0.19 0.65 0.54 0.32 0.35 0.28 0.35 0.37

1 1 1 1 1 1 1 1 1 1

0.5 0.4 0.6 0.55 0.95 0.79 0.83 0.49 0.81 0.30 0.55 0.59 0.51 0.55 0.39

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS

CDF Matrices to Correlation Matrices – Both Targeted Scenario

CDF Matrices                                                   n=6                                                   n=126
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lnMatPr -2.369 -2.101 -7.529 -6.449 -14.780 -2.292 -2.175 -7.204 -6.731 -12.865

FNorm 0.889 0.927 1.620 1.913 1.884 0.122 0.117 0.318 0.325 0.530

Rnk_lnMatPr 2 1 4 3 5 2 1 4 3 5

Rnk_FNorm 1 2 3 5 4 2 1 3 4 5

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 60 0.10 0.10 0.10 0.10 0.10 0.07 0.07 0.07 0.07 0.07

20 -20 50 -50 60 -0.11 -0.11 -0.11 -0.11 -0.11 -0.09 -0.09 -0.09 -0.09 -0.09

20 -20 50 -50 60 -0.11 -0.11 -0.11 -0.11 -0.11 -0.07 -0.07 -0.07 -0.07 -0.07

20 -20 50 -50 60 -0.15 -0.15 -0.15 -0.15 -0.15 -0.10 -0.10 -0.10 -0.10 -0.10

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 70 0.25 -0.31 0.61 -0.66 0.78 -0.01 -0.09 0.06 -0.16 0.11

20 -20 50 -50 70 0.36 -0.19 0.71 -0.58 0.84 0.14 0.04 0.21 -0.03 0.28

20 -20 50 -50 70 0.01 0.01 0.01 0.01 0.01 0.04 0.04 0.04 0.04 0.04

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 80 0.65 0.14 0.92 0.14 0.98 0.41 0.34 0.46 0.29 0.54

20 -20 50 -50 80 0.57 0.02 0.67 -0.32 0.60 0.35 0.29 0.41 0.23 0.47

1 1 1 1 1 1 1 1 1 1

20 -20 50 -50 90 0.81 0.16 0.70 -0.21 0.53 0.60 0.53 0.65 0.46 0.73

1 1 1 1 1 1 1 1 1 1

XI. APPENDIX 2:  Empirical Results of NAbC, Full Matrix – Case F.TS

CDF %Shift Matrices to Correlation Matrices – Both Targeted Scenario

CDF %Shift Matrices                                      n=6                                                   n=126


