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NOTE: This article summarizes a chapter in my forthcoming monograph for Cambridge University Press. 
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INTRODUCTION 

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, 
allocation, forecasting, and risk analysis, simply is not possible without explicitly modeling the 
dependence structure of their assets.  Dependence structure can drive portfolio results more than many 
other parameters in investment and risk models – sometimes even more than their combined effects – 
but the literature provides relatively little to define the finite-sample distributions of dependence 
measures in useable and useful ways under challenging, real-world financial data conditions.1  Yet this is 
exactly what is needed to make valid inferences about their estimates, and to use these inferences for a 
myriad of essential purposes, such as hypothesis testing, dynamic monitoring, realistic and granular 

 
1 I take ‘real-world’ financial returns data to be multivariate with marginal distributions that can vary notably from each other in 
their degrees of heavy-tailedness, serial correlation, asymmetry, and (non-)stationarity.  These obviously are not the only 
defining characteristics of such data, but from a distributional and inferential perspective, they remain some of the most 
challenging, especially when occurring concurrently as they do in non-textbook settings. 

mailto:JDOpdyke@gmail.com


 
JD Opdyke, Chief Analytics Officer, 2024                           Page 2 of 50                     Beating the Correlation Breakdown: Monograph 
 

scenario and reverse scenario analyses, and mitigating the effects of correlation breakdowns during 
market upheavals (which is when we need valid inferences the most). 

The following is a summary of a chapter of my forthcoming monograph (of the same title) that introduces 
a new and straightforward method – Nonparametric Angles-based Correlation (“NAbC”) – for defining the 
finite-sample distributions of a very wide range of dependence measures for financial portfolio analysis 
(file downloads at http://www.datamineit.com/DMI_publications.htm ).  These include ANY that are 
positive definite, such as the foundational Pearson’s product moment correlation matrix (Pearson, 1895), 
rank-based measures like Kendall’s Tau (Kendall, 1938) and Spearman’s Rho (Spearman, 1904), as well 
as measures designed to capture highly non-linear and/or cyclical dependence such as the tail 
dependence matrix (see Embrechts, Hofert, and Wang, 2016, and Shyamalkumar and Tao, 2020), 
Chatterjee’s correlation (Chatterjee, 2021), Lancaster’s correlation (Holzmann and Klar, 2024), and 
Szekely’s distance correlation (Szekely, Rizzo, and Bakirov, 2007) and their many variants (such as 
Sejdinovic et al., 2013, and Gao and Li, 2024).2  

Motivation for NAbC’s development has been its effective application to real-world financial portfolios 
(as opposed to textbook settings), so the solution is characterized by seven critically necessary results 
that no other method provides simultaneously:   

1. NAbC remains valid under challenging, real-world data conditions, with marginal asset distributions 
characterized by notably different and varying degrees of serial correlation, (non-)stationarity, heavy-
tailedness, and asymmetry3 

2. NAbC can be applied to ANY positive definite dependence measure, including those listed above  

3. NAbC remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures 

4. NAbC provides valid confidence intervals and p-values at both the matrix level and the pairwise cell 
level, with analytic consistency between these two levels (i.e. the confidence intervals for all the cells 
define that of the entire matrix, and the same is true for the p-values; this effectively facilitates attribution 
analyses) 

5. NAbC provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a 
(unique) correlation/dependence measure matrix, and back again, enabling precision in reverse 
scenarios and stress testing 

 
2 Note that “positive definite” herein refers to the dependence measure calculated on the matrix of all pairwise associations in 
the portfolio, that is, calculated on a bivariate basis.  Some of these dependence measures (e.g. Szekely’s correlation and 
variants of Chatterjee’s) can be applied on a multivariate basis, in arbitrary dimensions, for example, to test the hypothesis of 
multivariate independence.  But “positive definite” herein is not applied in this sense, and I explain below some of the reasons 
for using the dependence framework of all pairwise associations, which is highly flexible, and allows for more precise, 
targeted, and hence more effective attribution and intervention analyses.  
 
3 These obviously are not the only defining characteristics of such data, but from a distributional and inferential perspective, 
they remain some of the most challenging, especially when occurring concurrently as they do in non-textbook settings. 
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6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario 
or stress test – that is, unaffected by the scenario – thus enabling flexible, granular and realistic scenarios 

7. NAbC remains valid not just asymptotically, i.e. for sample sizes presumed to be infinitely large, but 
rather, for the specific sample sizes we have in reality,4 enabling reliable application in actual, real-world, 
non-textbook settings 

To date, financial portfolio analysis in practice very often relies on ad hoc, largely qualitative, and 
‘judgmental’ approaches to specifying and utilizing dependence structure, and when quantitative 
approaches are used, their valid application largely has been restricted to narrow cases.  But 
practitioners, academics, and regulators have a long history of bringing analytic and probabilistic rigor to 
bear when estimating and analyzing the other parameters of our portfolio risk and investment models.  As 
shown below, NAbC now ensures this same level of rigor can be applied to modeling dependence 
structure while simultaneously dramatically increasing both robustness and scenario-based flexibility. 

 

PEARSON’S CORRELATION, GAUSSIAN DATA, AND THE IDENTITY MATRIX 

We begin with Pearson’s product moment correlation matrix, the oldest and arguably most broadly used 
measure of dependence.  Although its limitations often are mischaracterized or misunderstood, 
especially as they relate to widely held views classifying it strictly as a measure of linear association (see 
van den Heuvel & Zhan, 2022), in many settings it remains either optimal or centrally relevant for wide-
ranging purposes (e.g. robust asset allocation (Welsch and Zhou, 2007), Black-Litterman variants 
(Meucci, 2010a, Qian and Gorman, 2001), entropy pooling with fully flexible views (Meucci, 2010b; 
Vorobets, A., 2024a & 2024b), portfolio optimizations combined with random matrix theory (Pafka and 
Kondor, 2004), stress testing (Bank for International Settlements, Basel Committee on Banking 
Supervision, 2011), and even non-linear, tail-risk-aware trading algorithms (Li et al., 2022, and Thakkar et 
al., 2021) to name a few).  Consequently, Pearson’s is the foundational dependence measure we start 
with, and the data and correlation structure we initially presume is Gaussian data under no correlation: 
that is, Pearson correlation values of zero off the diagonal of the matrix as in (1).5 

(1) identity matrix =  for p = 4 assets 

 
4 This is conditional upon n>p, that is, the matrix is full rank, with more observations than assets.  It cannot be positive definite 
otherwise. 
 
5 Note, of course, that a zero value for Pearson’s correlation does not imply independence, but independence does imply a 
zero value for Pearson’s correlation. 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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If we take two variables, such as the returns of two assets, X and Y, over a time period with n 
observations, we calculate Pearson’s correlation coefficient for this sample as (2):6 

(2)

( )1 1 1

2 2

1 1 1 1

1 1

,

1 1

n n n

i i

i i i

n n n n X Y

i i

i i i i

X X Y Y
Cov X Yn n
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s s

X X X Y
n n

= = =

= = = =
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   
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  

   
 

For the corresponding matrix of all pairwise correlations, we have: 

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

1

1

1

1

r r r

r r r
R

r r r

r r r

 
 
 =
 
 
   , with the usual, following characteristics: 

i.   Symmetry: , ,i j j ir r=
 

ii.  Unit diagonal entries: 
1i jr = =

 

iii. Bounded non-diagonal entries: ,1 1i jr−  
 

iv. The matrix is positive definite, i.e. all eigenvalues 
0i 

 

For completeness and for reference throughout this article, we define eigenvalues here:  

If there exists a nonzero vector v such that Rv v= then  λ  is an eigenvalue of R and v is its 
corresponding eigenvector.  λ and v can be obtained by solving 

( ) ( )det 0,  then det 0, where  is the identity matrix and det is the determinantI R I R v I − = − =
 

The eigenvalue can be thought of as the magnitude of the (portfolio) variance in the direction of the 
eigenvector.  Also note that with iii. above, this range can be tighter under specific circumstances, such 

as for equicorrelation matrices where ( )1 p 1 1,  p dim( ).r r− −   =  

 

Correlations to Angles, Angles to Correlations 

 
6 Recall that Pearson’s requires that both the first raw moment (the mean) and the first central moment (the variance) of the 
distributions of X and Y are finite. 
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The key to the NAbC approach rests in its use of the ANGLE, 𝛉 , between the two mean-centered data 
vectors of X and Y, as opposed to directly and only using of the values of the correlations themselves.  For 
a single pair of variables, providing a single bivariate correlation value, the relationship between angle 
value and correlation value is most readily seen in the widely known “cosine similarity,” where the cosine 
of the angle equals the inner product divided by the product of the two vectors’ (Euclidean) norms as in 
(4):7 

(4) 

( )
( )( ) ( )( )

( )( ) ( )( )

( )
1

2 2

1 1

,inner product
cos ,   with 0

product of norms

N

i i

i

N N
X Y

i i

i i

X E X Y E Y
Cov X Y

X E X X E X

   
 

=

= =

− −

= = = = =  

− −



 

X,Y

X Y

 

If a portfolio has p assets, the number of its pairwise relationships is npr=p(p-1)/2.  For all these npr 
relationships, the matrix analogue to (4), as long as the matrix is symmetric positive definite,8 is well 
established in the literature (Pinheiro and Bates, 1996, Rebonato and Jackel, 2000, Rapisarda et al., 2007, 
Pouramadi and Wang, 2015, and Cordoba et al., 2018) and shown below, formulaically in (5)-(7) and in 
code in Table A.  The steps for translating between correlations and angles, in both directions, are shown 
in A.-C. below. 

A. estimate the correlation matrix from sample data 
B. obtain the Cholesky factorization of the correlation matrix 
C. use inverse trigonometric and trigonometric functions on B. to obtain corresponding spherical angles 

and in reverse: 

C. start with a matrix of spherical angles 
B. apply trigonometric functions to obtain the Cholesky factorization  
A. multiply B. by its transpose to obtain the corresponding correlation matrix 
 

(see Rebonato & Jaeckel, 2000, Rapisarda et al., 2007, and Pourahmadi and Wang, 2015, but note a typo 
in the formula in Pourahmadi and Wang, 2015, for the first 3 steps) 
 

Central to this correlation-angle translation mechanism is obtaining the Cholesky factor of the 
correlation/dependence matrix, which is usually a hard-coded function in most statistical and 
mathematical software.  The relevant formulae are included below for completeness.   

 
7 While r typically is used to represent Pearson’s calculated on a sample, ρ typically is used to represent Pearson’s calculated 
on a population. 
 
8 Note that this is true not only for Pearson’s, but also for all relevant dependence measures in this setting, as will be discussed 
below. 
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(5) A correlation matrix R will be real, symmetric positive-definite, so the unique matrix B that satisfies   

TR BB=  where B is a lower triangular matrix (with real and positive diagonal entries), and 
TB is its 

transpose, is the Cholesky factorization of R.  Formulaically, B’s entries are as follows: 

( )
1

2

, , ,

1

j

j j j j j k

k

B R B
−

=

=  −
,     

1

, , , ,

1,

1
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j

i j i j i k j k

kj j

B R B B i j
B

−

=

 
= −  

 


 

The Cholesky factor can be viewed as a matrix analog to the square root of a scalar, because like a square 
root the product of it and its transpose yields the original matrix.  Importantly, the Cholesky factor places 
us on the UNIT hyper-(hemi)sphere (where scale does not matter) because the sum of the squares of its 
rows always equals one.  Next, we recursively apply inverse trigonometric and trigonometric functions to 
each cell of the Cholesky factor to obtain each cell’s angle value; or in reverse, we obtain a 
correlation/dependence value from each cell’s angle value (see Pourahmadi and Wang, 2015, as well as 
Rapisarda et al., 2007, for a meticulous derivation of these formulas).  Note that this relationship is one-
to-one, with a unique correlation/dependence matrix yielding a unique angles matrix, and vice versa.   

(6)  

For R, a p x p correlation matrix, 
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( ),for  angles 0, .i ji j   
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To obtain an individual angle ,i j , we have:9 

( ) ( )
1

,1 ,1 , , ,

1

For 1:     arcos  for =1;  and  arcos sin  for 1
j

i i i j i j i k

k

i b j b j  
−

=

 
 = =  

 


 

(7) To obtain an individual correlation, ,i jr , we have, simply from 
TR BB= : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, ,1 ,1 , , , , , , ,

2 1 1

cos cos cos cos sin sin cos sin sin   for 1
i k i
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= + +     
 

SAS/IML code translating correlations to angles and angles to correlations is shown in Table A below: 
 

TABLE A:  

 

 
9 Note that a similar recursive relationship exists between partial correlations (Madar, 2015), although its sample-generating 
algorithm it is not generalizable beyond Pearson’s correlations, i.e. to all positive definite measures of dependence, as is NAbC 
as shown below in later sections. 
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The above all is well-established and straightforward,10 and demonstrates, as we know intuitively, that 
scale does not (and should not) matter when it comes to dependence measures;11 again, in this 
setting, this is because geometrically, the Cholesky factor places us on the UNIT hyper-(hemi)sphere.  
Importantly, the Cholesky factor also ensures that sampling based directly on the resulting angles will 
yield only positive definite matrices, as the Cholesky factor remains undefined otherwise.  This 
automatic enforcement of positive definiteness makes this approach much more efficient than 
others that require post-sample verification of positive definiteness, and subsequent resampling when 
this requirement is violated12 (see Makalic and Schmidt, 2018, Cordoba et al. 2018, and Papenbrock et 
al., 2021).  This inefficiency grows very rapidly with the size of the matrix/portfolio, as shown in the ratio 
below in (8) (see Bohn and Hornik, 2024, and Pourahmadi and Wang, 2015).   

(8) 

( ) ( )
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1 2
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1 2
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−
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−
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− →
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 + 
        = =  = =      

      
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

 

Even for relatively small matrices of dimension p=25, the odds of successfully randomly generating a 
single valid positive definite correlation matrix, by uniformly sampling the off-diagonal correlation values 
themselves across values ranging from –1.0 to 1.0, are less then 2 in 10 quadrillion, leading to 
prohibitively inefficient sampling.  Consequently, even when sampling-rejection algorithms achieve some 
efficiency gains, realistically the sampling approach in this setting should possess automatic 
enforcement of positive definiteness.  Conceptually, an imperfect but apt analogy is to a rubiks cube: the 
colored stickers on the cube cannot simply be peeled off and repasted, even some of the time, to solve 
the cube.  The valid solution must be obtained by (always) following the rules governing shifts in the cube, 
each of which affects many of the individual cubes (cells), not just the one we need to reposition.  
Similarly with sampling the correlation/dependence matrix: converting to the Cholesky factor (en)forces 
positive definiteness by forcing the matrix onto the UNIT hyper-(hemi)sphere, where we can subsequently 
use the distributions of the angles to perturb it and obtain, after re-translation, the distribution of the 
original correlation/dependence matrix, without violating positive definiteness, simply by following steps 
A., B., and C., and C., B., and A., above. 

Another crucial characteristic of these angles is that they are random variables whose multivariate 
relationship is one of independence (see Pourahmadi and Wang, 2015, Tsay and Pourahmadi, 2017, 

 
10 Reliance on spherical angles and the hyper(hemi)sphere is not uncommon in quantitative finance, in large part due to its 
scale invariance: it has even been used effectively to define entire markets (see Kim and Lee, 2016). 
 
11 Scale invariance is widely proved and cited for Pearson’s, Kendall’s, and Spearman’s (see Xu et al., 2013, and Schreyer et al., 
2017 examples). 
 
12 As shown below, this approach also much more straightforward, not to mention more generalizable, than the other, more 
complex sampling algorithms that have been proposed, such as the vine and extended onion algorithms of Lewandowski et al. 
(2009), the similar chordal sparsity method of Kurowicka (2014), the Metropolis-Hastings and Metropolis algorithms of 
Cordoba et al. (2018), and the restricted Wishart distribution approach of Wang et al. (2018).  
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and Ghosh et al., 2020).  This is critically important for practical usage as it enables the straightforward 
construction of the multivariate distribution of a matrix of angles, which is the more important objective 
here (vs merely sampling) and essential for the application of NAbC below. 

Finally and most critically, the above demonstrates that the angles between pairwise data vectors 
contain ALL the information that exists regarding dependence between the two variables because 
the only information we lose by jumping to the unit hyper(hemi-)sphere is scale (see Fernandez-Duren & 
Gregorio-Dominguez, 2023, and Zhang & Songshan, 2023, as well as Opdyke, 2024a).  This will be 
covered more extensively below. 

So with all this in mind we proceed with the use of the angles as described and defined above.  The goal is 
to use the angles as the basis for 1. sample generation of the correlation matrix (dependence measure 
matrix); and more importantly, 2. definition of the multivariate distribution of the correlation matrix 
(dependence measure matrix). 

 

Fully Analytic Angles Density, and Efficient Sample Generation 

Once we have the matrix of angles, one for each pairwise correlation (dependence measure), we use the 
well-established finding that, to sample uniformly from the space of positive definite matrices, the 
probability density function (pdf) must be proportional to the determinant of the Jacobian of the Cholesky 
factor (9) (see Cordoba, 2018, Pourahmadi and Wang, 2015, Lewandowski et al., 2009).   

(9) 
( )

1

1

det 2   where  is the Cholesky factorization of correlation matrix 
p

p i t

ii

i

J U u U R UU
−

=

  = =  
 

We see directly from (9) that ( )sink x , suitably normalized in (10), satisfies this requirement (see 

Pourahmadi and Wang, 2015, and Makalic and Schmidt, 2018). 

(10) 

( ) ( ) ( ) ( )
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2 1
sin ,  0, ,  1,2,3, , #columns 1 , and 

2 1 2

k

X k k

k
f x c x x k c

k




 +
=   = − =

 +
 

Although not mentioned in Makalic and Schmidt (2018), importantly note that k = #columns – column# 
(so for the first column of a p=10x10 matrix, k=9; for the second column, k=8, etc.). 

However, we need both the cumulative distribution function (cdf) and its inverse, the quantile function, to 
make use of this density for sampling and other purposes.  The most widely used and straightforward 
method of sampling is inverse transform, whereby the values of a uniform random variate are passed to 
the quantile function to generate values.  Yet regarding the cdf corresponding to (10) above, Makalic and 
Schmidt (2018) state, “Generating random numbers from this distribution is not straightforward as the 
corresponding cumulative density [sic] function, although available in closed form, is defined recursively 
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and requires O(k) operations to evaluate. The nature of the cumulative density [sic] function makes any 
procedure based on inverse transform sampling computationally inefficient, especially for large k.” 

Fortunately, that turns out not to be the case, as Opdyke (2020) derived an analytic, non-recursive 
expression of the cdf below in (11). 

( ) ( ) ( )2

2 1

1 1 1 3
; ~ cos , ; ;cos  for ,

2 2 2 2 2
X k

k
F x k c x F x x

− 
−       
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2 2 2 2 2
k

k
c x F x x

− 
+         

      
 

( ) ( )

( )2 1where the Gaussian hypergeometric function , ; ;   
!

n

n n

n n

a b r
F a b c r

c n



= 
 

      ( ) ( ) ( ) ( ) ( )
0

where 1 2 1 ,  1,  1,  and 1,  0, 1, 2,...
n

h h h h h n n h r c= + + + −  =   − −  

Interestingly, the Gaussian hypergeometric function makes many appearances in this setting,13 but it is 
admittedly cumbersome mathematically.  But Opdyke (2022, 2023, and 2024a) has shown that (11) can 
be simplified further, based on some arguably obscure hypergeometric identities in (12) below: 

  ( ) ( )2 1For 1 and 0 1 simultaneously, which holds in this setting, we have , ; ; ; ,1 ac a r F a b c r B r a b a r= +   = −  

( ) ( )
11

0

where ; , 1  = the incomplete beta function

r
baB r a b u u du
−−= −

(see DLMF, 2024) 

In addition we have 

( ) ( ) ( )
( ) ( )

( )
( ; , ) ; , ,  where  , the complete beta function, soBeta

a b
F r a b B r a b B a b B a b

a b

 
= = =

 +  

( ) ( ); , ( ; , ) ,BetaB r a b F r a b B a b=        (see Weisstein, E., 2024a and 2024b) 

Combining terms we have 

 
13 The (Gaussian) hypergeometric function appears in derivations of the distribution of individual correlations (see Muirhead, 
1982, and Taraldsen, 2021), moments of the spectral distribution under some conditions (see Adams et al. 2018, and 
https://reference.wolfram.com/language/ref/MarchenkoPasturDistribution.html), and in the definition of positive definite 
functions (see Franca & Menegatto, 2022). 
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   

Recognizing that the complete Beta function is the inverse of the normalization factor of c(k) for these 
values, their product equals 1 and cancels, as do the two cosine terms, and we obtain the following 
signed beta cdf: 

( ) ( )21 1 1 1
; ~ cos ; ,  for ,

2 2 2 2 2
X Beta

k
F x k F x x

+   
−          

     
( )21 1 1 1

~ cos ; ,  for 
2 2 2 2 2

Beta

k
F x x

+   
+          

And now, with this straightforward, fully analytic, non-recursive cdf, we can obtain a straightforward, fully 
analytic quantile function of the angle distribution: 

( )Let  Pr .  Then for ,
2

p x X x


=  
 

( )21 1 1 1
cos ; ,

2 2 2 2
Beta

k
p F x

+   
= −         

( )2 1 1
2 1 cos ; ,

2 2
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k
p F x

+ 
− = − +     

( )2 1 1
1 2 cos ; ,

2 2
Beta

k
p F x

+ 
− =     

( )1 21 1
1 2 ; , cos

2 2
Beta

k
F p x− + 

− = 
   

( )1 1 1
1 2 ; , cos

2 2
Beta

k
F p x− + 

− = 
   

1 1 1
arcos 1 2 ; ,

2 2
Beta

k
F p x−

 + 
− =        (Note that arcos is arc-cosine, the inverse of the cosine function.) 

We must reflect the symmetric angle density for p≥0.5, so we have 
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k
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2 2

Beta

k
F p p −

 + 
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Importantly, although often ignored in the sampling literature (see Makalic and Schmidt, 2018), note that 

properly adjusting for sample size, n, and degrees of freedom gives # 2k k n cols + − − , so 

consequently, #  2k n column= − − . 

So now from (12) above we have for the angles distribution, under the Gaussian identity matrix, for the 
first time together, the pdf, cdf, and quantile function: 
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 1 1 1
= arcos 1 2 1 ; ,  for 0.5

2 2
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k
F p p −

 + 
− − −        

Apparently the first (and only other) presentation of this quantile function result comes from an 
anonymous blog post in March, 2018, although it was obtained via a different derivation, which serves to 
further validate the result.14 

 
14 See Xi’an, March, 2018 (https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-
unit-n-1-sphere-defined-by-n-1-dime/331850#331850  
and  https://xianblog.wordpress.com/2018/03/08/uniform-on-the-sphere-or-not/ ).  In the interest of proper attribution, a 
reference on the website to the book “The Bayesian Choice” hints that the Xi’an pseudonym is Christian Robert, a professor of 
Statistics at Université Paris Dauphine (PSL), Paris, France, since 2000 (https://stats.stackexchange.com/users/7224/xian). 
 

https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-unit-n-1-sphere-defined-by-n-1-dime/331850#331850
https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-unit-n-1-sphere-defined-by-n-1-dime/331850#331850
https://xianblog.wordpress.com/2018/03/08/uniform-on-the-sphere-or-not/
https://stats.stackexchange.com/users/7224/xian
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The above (12) now provides a fully analytic solution,15 and in fact is so straightforward as to be readily 
implemented in a spreadsheet, and one is provided for download via the link below. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

So contrary to the assertions of Makalic and Schmidt (2018), the straightforward approach of inverse 
transform sampling CAN be used in this setting, for this narrow case, to efficiently sample the correlation 
matrix.  And in fact, this is the most efficient way to sample it.  Roman (2023) has compared Makalic and 
Schmidt (2018) to the above method (defined in Opdyke, 2022, 2023, and 2024a) and obtained over 30% 
decrease in runtime when using Opdyke (2022, 2023, and 2024a). 

But sampling arguably is the less important of our two goals, because with a fully analytic finite-sample 
distribution, we can define, exactly for a given sample size, the p-value of a given cell, and the confidence 
interval of a given cell.  The one-sided p-value simply is the CDF value for the lower tail, or [1 – (CDF 
value)] for the upper tail (13), and due to this pdf’s symmetry, the two-sided p-value is simply two times 
either one-sided value.  Correspondingly, the confidence interval for the critical value alpha is based on 
the quantile function as in (14) 

(13) one-sided p-value = ( );XF x k  or ( )1 ;XF x k−  where k = n – column# – 2;  

         two-sided p-value = 2 x one-sided p-value 

(14) ( )1 2;F k−  and ( )1 1 2;F k− −  where, for a 95% confidence interval for example, α = 0.05 

Notably, because the angles distributions are independent, the density of the entire matrix is simply the 
product of the densities of all the cells.  This means we can readily define the p-value and confidence 
intervals of the entire matrix such that they are analytically consistent with those of the cells, because 
they are determined based directly on the cell level p-values and confidence intervals, respectively, as 
shown below. 

 

Matrix-level p-values and Confidence Intervals 

As mentioned above, a key characteristic of the angles is that they are independent random variables, 
which makes defining their multivariate distribution straightforward: it is simply the product of all the 
angles’ pdf’s.  But what does this mean for the p-value and confidence intervals for the entire matrix?  
Given the null hypothesis (i.e. the Gaussian identity matrix up to this point, although these results also 
apply to the more general case), the (2-sided) p-value of the entire matrix is simply one minus the 

 
15 Note that we use the term ‘analytic’ as opposed to ‘closed-form’ because we are unaware of a closed-form algorithm for the 
inverse cdf of the beta distribution (see Sharma and Chakrabarty, 2017, and Askitis, 2017).  However, for all practical purposes 
this is essentially a semantic distinction since this quantile function is hard-coded into all major statistical / econometric / 
mathematical programming languages. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
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probability of no false positives, which is the definition of controlling the family-wise error rate (FWER) of 
the matrix (15).16 

(15)  ( )
( )1 2

1

matrix (2-sided)  1 1 -
p p

i

i

pvalue p value
−

=

 
= − − 
 

    where - ip value  is the 2-sided p-value. 

Again, because the cell-level distributions are independent, their p-values are independent, and 
otherwise statistically more powerful approaches for calculating the FWER that rely on, for example, 
resampling methods (see Westfall and Young, 1993, and Romano and Wolf, 2016), do not apply here.  In 
other words, they provide no power gain over (15) because under independence, there is no dependence 
structure for them to exploit.  So the straightforward calculation above in (15) is, by definition, the most 
powerful for FWER control. 

Similarly, calculation of the confidence interval for the entire matrix (16) is essentially the same as that of 
the p-value, but of course it is divided in half to account for each tail, and the root of the critical values is 
taken, rather than the product.  Otherwise, the calculations are identical to obtain the critical alphas for 
these ‘simultaneous confidence intervals.’ 

(16) 
 

( )( )( )1 1 2
1 1 2

p p

crit simult LOW 
−  

− − = − −
  and  

1crit simult HIGH crit simult LOW − − − −= −
 

These critical alphas, when inserted in the quantile function (12), provide the two correlation matrices 
that define and capture, say, (1-alpha)=(1-0.05)=95% of randomly sampled matrices under the null 
hypothesis, which in this case is the identity matrix.  Again, it is the independence of the angles that 
makes these simultaneous confidence intervals very straightforward to calculate.   

Importantly, again note that because we derived the quantile (inverse cdf) function in (12) above, we can 
go in either direction regarding these results: we can specify a correlation matrix and, under the null 
hypothesis of the identity matrix, obtain its p-values, both for the individual cells and the entire matrix, 
simultaneously.  We also can specify a matrix of cdf values and obtain its corresponding correlation 
matrix, which is extremely useful and straightforward when constructing reverse scenarios.  Finally, we 
can use simultaneous confidence intervals to obtain the two correlation matrices that form the matrix-
level confidence interval.   

Note that all these calculations are included in the downloadable spreadsheet, with visible formulae 
corresponding to each step of these calculations for full transparency.  In the next section below I expand 
these results for Pearson’s to apply to all data conditions, and all values of the null hypothesis (i.e. any 
values for the matrix, not just the identity matrix). 

 

 
16 Note that this approach has been used in the literature for addressing very closely related problems (see Fang et al., 2024).  
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PEARSON’S CORRELATION, REAL-WORLD FINANCIAL DATA, ANY MATRIX 

Currently, the extant literature does not provide analytic forms for the angles distributions under general 
conditions.  Deriving these appears to be a non-trivial problem.  Spectral (eigenvalue) distributions, 
which many researchers turn to in this setting, have been shown to vary dramatically when data is 
characterized by different degrees of heavy-tailedness (see Burda et al., 2004, Burda et al., 2006, 
Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & Potters, 2015, Martin & Mahoney, 2018; and 
Opdyke, 2024a), as well as by different degrees of serial correlation (see Burda et al., 2004, 2011, and 
Opdyke, 2024a), and the literature provides no general analytic form under general, real-world financial 
data conditions – certainly nothing that is analogous to convergence to the Marchenko-Pastur 
distribution under iid independence (Marchenko and Pastur, 1967).17  If angles distributions are of similar 
complexity, deriving their general analytic form under general conditions, if possible, currently appears to 
be a non-trivial, unsolved problem. 

However, this need not be a showstopper for our purposes, in part because angles distributions have 
many characteristics that make them useful here generally, and more useful specifically than spectral 
distributions in this setting, by multiple criteria, including structurally, empirically, and distributionally.   

Structurally: Aggregation level becomes relevant and important here.  For a given correlation matrix R 
there are many more angles distributions than there are spectral distributions (i.e. p(p-1)/2 cells vs p 
eigenvalues, a factor of (p-1)/2 more).  As a matrix approaches singularity (non-positive definiteness 
(NPD)), which arguably is the rule rather than the exception for non-small investment portfolios, a much 
smaller proportion of angles distributions will approach degeneracy (i.e. maximum/minimum values of 𝛑 
and zero) than is true for eigenvalue distributions (where more values will wrongly fall below zero).  

Consequently, the overall construction of the correlation matrix via
TR BB= generally will remain much 

more stable than one based on an eigen-decomposition of
1R VΛV −= where V is a matrix with column 

eigenvectors and 𝛬 is a diagonal matrix of the corresponding eigenvalues. 

Empirically: If an angle distribution approaches degeneracy, most of its values typically will approach 0 
or 𝛑.  But the relevant trigonometric functions (sin, cos) of these values are stable, and will simply 

approach -1, 0, or 1.  This makes
TR BB= a relatively stable calculation empirically, even if it produces 

an R that is approaching NPD.  In contrast, eigenvalue/vector estimations are more numerically involved 
compared to the application of simple trigonometric functions, and this, combined with the fact that they 
have no upper bound (in the general case), makes their computation comparatively less numerically 
stable as matrices approach NPD. 

 
17 Note that some exceptions to convergence to this celebrated distribution do exist (see Li and Yao (2018), Hisakado and 
Kaneko (2023), and Maltsev and Malysheva (2024) for examples). 
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Distributionally: As shown graphically below under challenging, real-world financial data conditions, the 
angles distributions are relatively “well behaved,” both in the general sense and relative to spectral 

distributions.  They are relatively smooth and typically unimodal, and clearly bounded on
( )0, 

.  
Spectral distributions, based on the same data, very often are spikey18 and highly multimodal, and their 
unboundedness (in the general case) translates into larger variances and less tail accuracy.  Simply put, 
they typically are much more complex and challenging to estimate precisely and accurately compared to 
individual angles distributions for a given correlation matrix R under real-world financial data. 

All of this adds up to a more robust and granular basis for inference and analysis when relying on angles 
distributions as opposed to spectral distributions.  As discussed in more detail below, spectral 
distributions simply are at the wrong level of aggregation for these purposes: they remain at the (higher) 
level of the p assets of a portfolio – NOT at the granular level of the p(p-1)/2 pairwise associations of that 
portfolio, which is where the angles distributions (and correlations!) lie.  Consequently, while potentially 
very useful for things like portfolio factor analysis, spectral analysis simply is too blunt a tool for our 
purposes here: we need to be able to make inferences and monitor processes and conduct (reverse) 
scenario analyses and customized stress tests on ALL aspects of the dependence structure measured by 
the correlation matrix, at the granular level at which it is defined.  The specific need for this in scenario 
and reverse scenario analyses is covered in more detail below. 

So given the useful characteristics of the angles distributions (on both a general basis and relative to the 
alternative of spectral distributions), not to mention the fact that they remain at the right level of 
aggregation for granular analysis of the correlation matrix, we are able to proceed WITHOUT their analytic 
derivation: rather, we can use a time-tested nonparametric approach, such as kernel estimation, to 
reliably define them.  All this requires is a single simulation (say, N=10,000) based on the known or well-
estimated correlation matrix, and the known or well-estimated data generating mechanism.  Then, after 
translating all N simulated correlation matrices to N matrices of angles, we fit a kernel to each empirical 
angle distribution, i.e. the empirical distribution of each angle for each cell of the matrix.  We now have 
not only the densities of all the individual angles, but also the multivariate density of the matrix, which is 
just the product of all the individual densities due to their independence.  Note that this goes in both 
directions: we can perform ‘look-ups’ on the empirically defined distribution to obtain the cdf value(s) 
corresponding to particular angle value(s), or use cdf value(s) to ‘look up’ corresponding angle (quantile) 
value(s).  The kernel fitting smooths this empirical density to all (continuous) values.  This process is 
described step by step below. 

1. Simulate samples (say, N=10k) based on the specified/known or well estimated correlation matrix 
and the specified/known or well estimated data generating mechanism. 

 
18 In fact, one of the most commonly encountered covariance (correlation) matrices under real world financial data conditions 
is the spiked matrix (see Johnstone, 2001), where one or few eigenvalues dominate and the majority of eigenvalues are close 
to zero, i.e. not reliably estimated.  This further demonstrates that spectral approaches are far too limited and limiting to 
effectively solve this problem under real-world conditions. 
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2. Calculate the corresponding N correlation matrices, and their Cholesky factorizations, and transform 
each of these into a lower triangle matrix of angles (as described above in (6)). 

3. Fit kernel densities to each of the p(p-1)/2 empirical angle distributions, each having N observations. 
4. Generate samples based on the densities in 3.19 
5. Convert the samples from 4. back to a re-parameterized Cholesky factorization, and then multiply by 

its transpose to obtain a set of N validly sampled correlation matrices (as described above in (7)).  
Positive definiteness is enforced automatically as the Cholesky factor places us on the unit hyper-
hemisphere. 
 

The distribution of correlation matrices from 5. is identical to that of 2., but after the kernel densities are 
fit once in 3., generating samples in 4. is orders of magnitude faster than relying on direct simulations in 
steps 1. and 2.  And of course, using 3.-5. rather than 1. and 2. allows for correct probabilistic inference 
both at the cell level and at the matrix level, due to the independence of the angles distributions 
(remember the correlations themselves are NOT independent!).  This reliance on the angles, and their 
subsequent transformation to correlations, allows us to isolate specifically the distribution of the entire 
correlation matrix, for probabilistic inference, without touching any other distributional aspect of the 
data, which is the point of the methodology.  A cavalier ‘bootstrap’ of correlation matrices via direct data 
simulation fails at this objective, because the non-independence of the cells undermines the validity of 
any empirically-based inference.  In other words, direct simulation does not preserve inferential 
capabilities, but simulation of the angles does. 

So this framework is essentially identical to that for the specific case of the Gaussian identity matrix, with 
the only difference being it is based on nonparametrically defined, as opposed to parametrically defined, 
angles distributions.  Before covering implementation details below, I show some examples of graphs of 
the angles distributions and the corresponding spectral distribution under challenging, simulated 
financial returns data.  The multivariate returns distribution of the portfolio is generated based on the t-
copula of Church (2012), with p=5 assets, varying degrees of heavy-tailedness (df=3, 4, 5, 6, 7), skewness 
(asym. parm.=1, 0.6, 0, -0.6, -1), non-stationarity (std. dev.=3σ, σ/3, σ; n/3 obs each), and serial 
correlation (AR1=-0.25, 0, 0.25, 0.50, 0.75), with a block correlation structure shown in (17) below and 
n=126 observations.20  The spectral distribution is compared against Marchenko-Pastur as a baseline.   

 

 

(17) 

 
 

 
19 Algorithms for sample generation based on commonly used kernels (e.g. the Gaussian and Epanechnikov) are widely known.  
An example of the latter is simply the median of three uniform random variates (see Qin and Wei-Min, 2024). 
 
20 Note that this is only approximately Church’s (2012) copula, which incorporates varying degrees of freedom (heavy-
tailedness) and asymmetry, because I also impose serial correlation and non-stationarity on the data (and then empirically 
rescale the marginal densities). 

1 -0.3 -0.3 0.2 0.2

-0.3 1 -0.3 0.2 0.2

-0.3 -0.3 1 0.2 0.2

0.2 0.2 0.2 1 0.7

0.2 0.2 0.2 0.7 1
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Graph 1: Spectral Distribution – Angles/Kernel Perturbation v Data Simulations v Marchenko Pastur 
 

 
 

 

Graphs 2-10: Angles Distributions – Angles/Kernel Perturbation v Data Simulations v Independence 
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Several points are worth noting and reemphasizing from these graphs.  First, the graphs of the angles 
distributions contain three densities: A. one based on angles perturbation (i.e. sampling from the fitted 
kernel) as described above in steps 3.-5., B. one based on direct data simulations (steps 1.-2.), and C. the 
analytical density under the (Gaussian) identity matrix as a comparative baseline.  Note that the only 
reason I include B. is to demonstrate the validity of A., and as expected, the angles distributions from A. 
and B. are empirically identical (with A. being orders of magnitude faster and more computationally 
efficient).  The spectral distributions based on the samples generated in both A. and B. also are identical, 
as are a wide range of additional aggregated metrics not presented herein (e.g. various norms, VaR-based 
economic capital, and ‘generalized entropy’ as described below).  This empirically validates that the 
angles-perturbation approach is an efficient and correct method for isolating and generating the density 
of the correlation matrix, and unlike steps 1. and 2., one that preserves inferential capabilities.  In other 
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words, these results empirically validate that the angles contain all extant information regarding 
dependence structure here (see Fernandez-Duren & Gregorio-Dominguez, 2023, and Zhang & Songshan, 
2023, as well as Opdyke, 2024a).   

Second, note again that a nonparametric approach works in practice here at least in part because the 
angles distributions are ‘well behaved.’  Since they are relatively smooth and unimodal and well bounded, 
N=10,000 simulations almost always suffice to provide a precise and accurate measure of their 
densities.  Poorly behaved distributions that are very spikey, highly multi-modal, and unbounded could 
require numbers of simulations orders of magnitude larger.  If N=10,000,000 or even 1,000,000 for 
example, this approach could be computationally prohibitive in many cases for real-world-sized 
portfolios, which often exceed p=100 and p(p-1)/2=4,950 pairwise associations/cells. 

Finally, as described above, note the multi-modal and unbounded nature of the spectral distribution for 
this portfolio compared to the angles distributions, where the biggest thing approaching an estimation 
challenge is a slight asymmetry.  But this speaks only to estimation issues.  More notable is the fact that 
on a cell-by-cell basis, the angles distributions deviate materially i. not only from central values of 𝛑/2, 
and less dramatically from perfect symmetry, when compared to their (analytic) distributions under the 
(Gaussian) identity matrix, but also ii. from each other!  Each angle’s distribution can vary quite notably 
compared to the other angles’ distributions, especially under smaller sample sizes.  There simply is no 
way that a single spectral density, even if perfectly estimated, will be able to capture and reflect all the 
richness of dependence structure reflected here at the granular level of the pairwise cells, for any useful 
purposes, including cell-level attribution analyses, granular scenario and reverse scenario analyses, cell-
level intervention ‘what if’ analyses, and customized stress testing, let alone precise and correct 
inference at either the cell level OR the matrix level.  I now leave comparisons to spectral distributions 
behind21 to cover implementation issues below. 

 

Nonparametric Kernel Estimation 

Due to the bounded nature of the angles distributions on 
( )0, 

, the kernel must be appropriately 

reflected at the boundary (see Silverman, 1986) via: 
( )if 0 then ;if  then 2         −   −

, 
which is asymptotically valid.  As per the standard implementation, the kernel itself is defined as  

( ) ( ) ( )
1 1

1 1N N

h h i h i

i i

f K K h
N hN

    
= =

= − = −   
 with 

 
21 Continued reliance on spectral approaches for this specific problem brings to mind a quotation attributed to John M. 
Keynes: “the difficulty lies not so much in developing new ideas as in escaping from old ones.” 
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( ) ( )
2 2Gaussian: 1 2K e   −= 

,     
( ) ( ) ( )2Epanechnikov: 3 4 1 ,  1K   =  − 

. 

Both the Gaussian and the Epanechnikov kernels have been tested extensively in this setting, along with 
three different bandwidth estimators, h, from Silverman (1986) and one from Hansen (2014), 
respectively:  

1 5ˆ1.06h N −=   , 
1 50.79 IQRh N −=   , 

( ) 1 5ˆ0.9 min IQR 1.34,h N −=  
, and 

1 5ˆ2.34  for Epanechnkov onlyh N −=   , ˆwhere sample standard deviation and =

IQR sample interquartile range= .  As with virtually all kernel implementations, the choice of kernel 
matters less than the choice of bandwidth, although in this setting, across a broad range of data 
conditions and correlation values, the Epanechnikov kernel appears to perform slightly ‘better’ (i.e. with 
slightly less variance, thus providing slightly more statistical power) than the Gaussian, perhaps because 
its sharp bounds require reflection at the boundary less often than the Gaussian kernel.  The bandwidth 

that appears to perform best across wide-ranging conditions is 
( ) 1 5ˆ0.9 min IQR 1.34,h N −=  

.  
Additionally, for larger matrices (e.g. p=100), bandwidths need to be tightened by multiplying h by a factor 
of 0.15.  When there are many cells (e.g. for p=100, #cells=p(p-1)/2=4,950) this tightening avoids a slight 
drift in metrics that are aggregated across all the cells (e.g. correlation matrix norms, spectral 
distributions, and LNP (a type of ‘generalized entropy’ defined below)).  Multiplying by this factor for 
smaller matrices does not adversely affect the density estimation in any way, so this factor always is 
used.  For matrices much larger than p=100, a further tightening of this factor may be required, and this is 
readily determined by empirically comparing the distributions of these aggregated metrics under i. direct 
data simulation vs. ii. NAbC’s kernel-based sampling. 

Once the kernels have been estimated and the angles distributions generated by perturbing/sampling 
based on those kernels, the p-values and confidence intervals for both the individual correlation cells 
and the entire correlation matrix are the same as those derived for the Gaussian identity matrix.  The only 
difference, aside from their now-nonparametric basis, is that the angles distributions are no longer 
symmetric by definition, as is true under the (Gaussian) identity matrix.  This can be seen in the graphs of 
the angles distributions provided above.  The p-value calculation, however, remains very straightforward, 
and it requires just a bit of care to properly account for asymmetry.  The one-sided p-value remains 
simply (13): 

(13) one-sided p-value  = ( );XF x k  or ( )1 ;XF x k−  for lower and upper tails, respectively,  

             where k = n – column# – 2 

However, due to possible (probable) asymmetry, the two-sided p-value is different, requiring first the 
calculation of the empirical mean correlation matrix from the simulations in step 2. of the five kernel-
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based sampling steps above.  This mean correlation matrix is then translated into a matrix of angles, and 
we obtain the empirical cdf values corresponding to these “mean angles” with a “look-up” on the entire 
angles distributions generated in step 4.  These cdf’s will be close to 0.5 when the angles distributions are 
close to symmetry, and they will deviate from 0.5 under asymmetry.  The two-sided p-values are based on 
the difference between the cdf values of each of the angles of the specified correlation matrix being 
‘tested,’ and those of the “mean angles.”  Specifically, the two-sided p-values are the sum of the 
probability in the tails BEYOND this difference.22  Formulaically this is simply (18): 

(18)    two-sided p-value = max[0, Mcdf – d] + max[0, 1 – (Mcdf + d)],  where 
       d = abs(Mcdf – cdf), Mcdf = mean angle cdf, cdf = cdf of specified angle 
 
This usually results in summing both tails, but under notable asymmetry, sometimes only one tail is used.  
Below is a graphical example of both cases, where the cdf of the “mean angle” is 0.6 and the cdf of the 
relevant angle in the specified correlation matrix (i.e. the correlation matrix for which we are obtaining p-
values, confidence intervals, etc.) is cdf=0.1 in the single-tail case (Graph 11) and cdf=0.85 in the double-
tail case (Graph 12).  In the statistical sense, however, both cases remain two-sided p-values. 
 

 

Note that while cdf=0.1 is hardly more ‘extreme’ than cdf=0.85 in absolute terms, relative to the mean 
angle cdf=0.6, it is twice as ‘extreme,’ i.e. twice as far probabilistically from the mean cdf=0.6, with an 
absolute difference of 0.5 for Graph 11, and 0.25 for Graph 12.  Moreover, a value as extreme as the case 
of Graph 11 is associated with only 1/5 the probability of being observed compared to that of Graph 12 
(compare the red shaded areas).  This example demonstrates why asymmetry must be properly taken 
into account in this setting, but the two-sided p-value still remains a very straightforward calculation, and 
the “mean angles” matrix is used for additional, important purposes below, as discussed in the Scenarios 
section. 

Cell-level confidence intervals still are simply calculated as in (14), which automatically takes 
asymmetry into account.  This is identical to the same calculation under the (Gaussian) identity matrix.  
The matrix-level p-value, again, is simply one minus the probability of no false positives (15), which is the 

 
22 So this difference is 0.5 for Graph 11 and 0.25 for Graph 12. 
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definition of controlling the family-wise error rate (FWER) of the matrix.  Also, just as under the (Gaussian) 
identity matrix, calculation of the confidence interval for the entire matrix remains (16) as previously.  

Importantly, again note that we can go in either direction regarding these results: we can specify a 
correlation matrix and, under the null hypothesis of the specified correlation matrix, obtain the p-values 
of an observed matrix, both for the individual cells and the entire matrix, simultaneously.  We also have 
the matrix-level quantile function: we can specify a matrix of cdf values and obtain its corresponding, 
unique correlation matrix, which can be extremely useful and straightforward when constructing reverse 
scenarios.  Finally, we can use simultaneous confidence intervals to obtain the two correlation matrices 
that form the matrix level confidence interval.  An example with all these results is shown in the “One 
Example” section below, but first I discuss the scenario-restricted case. 

 

GRANULAR, FULLY FLEXIBLE SCENARIOS, REVERSE SCENARIOS, & CUSTOMIZED STRESS TESTS 

I have taken a very granular, ‘bottom up’ approach to defining the finite-sample distribution of the 
correlation matrix here, based on the distributions of the individual correlation cells.  In addition to 
analytical consistency, this provides a flexibility that other approaches, such as those based on the 
spectrum of the dependence measure’s matrix, cannot provide, because with only p eigenvalues, they 
simply are at the wrong level of aggregation to flexibly vary (or freeze) individual cells, as well as specific 
combinations of the p(p-1)/2 cells for different scenarios.  Correlation (dependence) matrices under a 
tech market bubble (2000) vs those under a housing bubble (2008) vs those under Covid (2020) will 
change very different individual cells, and very different combinations of cells, in very different ways, 
often in terms of both direction and magnitude, while leaving many cells strongly affected under one 
upheaval completely unaffected under another.  In other words, while correlation ‘breakdowns’ will occur 
under all of these extreme conditions, the granular nature of pairwise association matrices ensures that 
the fundamentally different nature of these breakdowns will be captured and reflected empirically in all 
related analyses. The only way to flexibly and realistically model this is at the most granular level – that of 
the individual correlation cells. 

Fortunately, when using NAbC, several results allow for this.  First, 1. independence of the angles 
distributions allows us to vary individual cells.  Second, 2. the distributions of individual correlation cells, 
as well as the distribution of the entire correlation matrix, both remain invariant to the ordering of the 
rows and columns of the matrix (see Pourahmadi and Wang, 2015, and Lewandowski et al., 2009).  Third, 
based on 1. and 2., we can exploit the simple mechanics of matrix multiplication so that only selected 
cells of the matrix are affected, and the rest frozen, as required for a given scenario. 

To explain 3., I focus only on the lower triangle of the correlation matrices below in Graphs 13-15, since 
the upper triangle is just its reflection.  Note again that using NAbC, we only perturb angles.  We never 
perturb the correlation values directly.  We must always convert to angles, perturb the angle values, and 
then translate back to correlation values.  In doing so, when multiplying the Cholesky factor by its 



 
JD Opdyke, Chief Analytics Officer, 2024                           Page 24 of 50                     Beating the Correlation Breakdown: Monograph 
 

transpose, 
TR BB= , changing a given angle cell in matrix B will affect other cells, but only those cells to 

the right of it in the same row, and those below the diagonal of the corresponding column, as shown 
graphically for several examples in Graph 13 below.23 

GRAPH 13: Mechanics of Matrix Multiplication 

 
 

This means that we can simply reorder the matrix so that the targeted cells we want to vary all end up in 
the rightmost triangle of the lower triangle, according to the fill order in Graph 14 below. 

GRAPH 14: Rightmost Triangle Fill Order 

 

If we only change in matrix B the angle values of cells 1, 2, and 3 above, no other cells in the correlation 

matrix R will be affected, simply by virtue of the mechanics of matrix multiplication from 
TR BB= .  

Below I show another example.  Reorder the correlation matrix so that rows 1-6 are now 6-1 and columns 
1-6 are now 6-1, so that the original cells 1,2 and 1,3 and 2,3 and 4,3 are now in the rightmost triangle of 
the lower triangular matrix, in the fill order shown above. 
 

GRAPH 15: Example of Mechanics of Matrix Multiplication Applied to Rightmost Triangle Fill Order 

 

 
23 Note that not all of these (orange) cells will necessarily change if values of zero are involved, but none OTHER than these 
(orange) cells CAN change when only the red cell changes. 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Rightmost Triangle Fill Order 

Determine Targeted Change Cells 
Reorder Rows/Cols to Fill Rightmost Triangle 

with Targets According to Fill Order 

Changes in Corresponding 

Angles Cells ONLY change 

Same in Resorted Matrix 
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Changes to the corresponding cells in the angles matrix B (the orange cells) will only change these same 

cells , after 
TR BB= , in the resulting correlation matrix, leaving the rest unaffected.  Note that the green 

cells to be targeted for change do not even have to be contiguous, nor do they have to completely ‘fill’ the 
rightmost (orange) triangle (note that cells 5 and 6 are not targeted): they only must fill the rightmost 
triangle according to the order of the middle matrix above.  Note also that the “rightmost triangle” rule is 
nested/hierarchical: if I wanted to perform ‘what if’ analyses on only one of those cells (e.g. cell “1,2”) 
without changing the other three, I order the original correlation matrix to place that cell as the ‘first’ in 
the lower triangle of the B matrix, as shown.  Then, subsequent changes to it will not affect the other 
(orange) cells.  In contrast, changes to cell “4,3” will affect the values of the other orange cells.  Readers 
are encouraged to test this in the interactive spreadsheet (url link provided above). 

So we can exploit these four simultaneous conditions – 1. independence of the angles distributions; 2. 
(correlation) distribution invariance to row and column order; 3. the mechanics of matrix multiplication; 
and 4. the granular, cell-level geometry of NAbC – to obtain great flexibility in defining scenarios wherein 
some cells vary and some do not.  No other approach allows this degree of flexibility, which is what is 
required for defining correlation/dependence matrices for use in realistic, plausible, and sometimes 
extreme stress market scenarios.  This also greatly simplifies attribution analyses, isolating and making 
transparent the identification of effects due to specific pairwise associations, which is something 
spectral analyses cannot do in this setting. 

The above allows for the specification of ANY scenario within the structure of the pairwise matrix.  Note, 
however, that some scenarios can include combinations of cells which are forced to include (in the lower 
right triangle) one or a few cells not affected by the scenario.  This is unavoidable due to the structure of 
the pairwise matrix: for example, in the matrix above, there are only p! (ie 5!=120) ways to sort the rows 
and columns, but there are [p(p1-)/2]! (ie 15!= 1,307,674,368,000) ways to sort the 15 cells.  The matrix 
obviously cannot accommodate freely sorting the individual cells in this way because it breaks the 
structure of the matrix.  Some scenarios, therefore, could conceivably be required to include for 
perturbation some few additional cells in the lower rightmost triangle that are not relevant to the scenario 
and otherwise should be held constant.  Fortunately, in practice, especially with large matrices, this 
appears to be a relatively rare occurrence, and when it happens, the effects are identifiable so that 
materiality can be assessed.  But dealing with these potential cases appears to be well worth the price of 
the unmatched flexibility that this approach provides,24 not to mention the other advantages it maintains 
over more complex, strictly multivariate dependence structures.  For usage with actual market data, the 
latter typically are more difficult to estimate with the same levels of precision, let alone to manipulate for 

 
24 Most of the related scenario literature perturbs scenario-based cells and simply ignores their (notable) effects on the rest of 
the matrix (which should remain ‘frozen,’ but doesn’t), not to mention the effects of the rest of the matrix on the scenario-
related cells, and euphemistically refers to the former as ‘peripheral’ correlations (see Ng et al. (2013) and Yu et al. (2014)).  
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purposes of intervention or mitigation.  In contrast, pairwise associations are directly identifiable, 
typically more easily and accurately estimated,25 and interventions are more targeted and transparent. 

To conclude this section I deal with one final implementation issue.  When the matrix is scenario-
restricted, and we only perturb a subset of the matrix while keeping the remaining cells fixed, what values 
do we use for those ‘frozen’ cells?  This is where the mean angles matrix, used for calculating the two-
sided p-values in the previous section, comes into play.  When the matrix angles are sampled using the 
fitted kernel densities, a sample is drawn from the entire matrix, and if it is scenario restricted, the 
sampled values for those cells that are ‘frozen’ are simply overwritten with their means.  So after 
N=10,000 samples, all 10,000 values of the ‘frozen’ cells unaffected by the scenario will have the same 

mean value for that specific cell, and when translated via 
TR BB=  back into correlation matrices, all 

the correlation values for those cells will be their mean correlation value.  In other words, their values will 
not change, and will remain ‘frozen,’ based on a reasonably robust estimator of their true value (note that 
these values are not based on one estimated matrix, but rather the mean of N=10,000 matrices).  The 
order of magnitude of empirical accuracy of these values is inversely related to the number of samples 
drawn, N.  In the example in the “One Example” section below, we observe accuracy to the fourth 
decimal place for these frozen cells when N=25,000, as expected.  Alternately, the values could be 
treated as truly known constants from the beginning, but it is more conservative (and realistic) to use 
estimates based on the mean of all the samples. 

Finally, now, we are able to revisit the fact that all of the above findings are generalizable not only to ANY 
data conditions, but also to ANY dependence measure, as long as its pairwise matrix is symmetric 
positive definite.  Again, this is due to the fact that the relationship between angles and 
correlation/dependence matrices holds under this condition, regardless of the dependence measure 
that has generated the matrix, as shown below. 

 

BEYOND PEARSON’S WITH NAbC: ALL POSITIVE DEFINITE DEPENDENCE MEASURES 

The only condition required for the relationships between angles and dependence measure values, as 
shown in (6) and (7) above, is the symmetric positive definiteness of the dependence measure.  Because 
this approach uses the framework of all pairwise comparisons, measuring dependence on a bi-variate 
basis, the requirement of symmetric positive definiteness, more precisely, is the symmetric positive 
definiteness of the matrix of the dependence measure calculated on every pairwise association of the all 
the assets in the portfolio.  This distinction is important to make as many dependence measures can be 

 
25 They also can be estimated rigorously, and with targeted precision and flexibility, with well-established methods such as 
vine copulas (see Czado and Nagler, 2022)).  Ironically, however, when used for inference or sampling for this problem 
specifically, vine copulas and similar methods become extremely unwieldy and much more complex and less transparent 
than NAbC, not to mention not generalizable beyond Pearson’s (see the vine and extended onion algorithms of Lewandowski 
et al. (2009), and the similar chordal sparsity method of Kurowicka (2014)). 
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calculated not only on a bi-variate basis, but also on a multivariate basis, such as Szekely’s distance 
correlation (Szekely, Rizzo, and Bakirov, 2007)  and variants of Chatterjee’s correlation (see Huang et al., 
2022, Gamboa et al., 2022, Fuchs, 2024, and Pascual-Marqui et al., 2024; see as well as Chatterjee, 2022 
for a summary of the recent literature on multivariate measures).  We keep to the framework of the all-
pairwise matrix here for numerous reasons, including its tremendous flexibility, ease and directness of 
application, ease, if not increased power, in estimation, and ease and transparency in intervention and 
what-if analyses.  But the main point here is that all references to positive definiteness herein refer to the 
framework of the all-pairwise matrix. 

This positive definiteness (numerical issues aside) has been long proven for the “the big three,” that is, for 
the three most widely used dependence measures – Pearson’s rho, Kendall’s tau, and Spearman’s rho 
(see Sabato et al., 2007).  The values of these measures all range from  –1 to 1,26 but many other 
measures range from 0 to 1.  These include Szekely’s, Lancaster’s, the Tail Dependence Matrix, 
Chatterjee’s and its many variants (see Gao and Li, 2024) and many others.  Proving that these, too, are 
positive definite is very straightforward, and was done by Embrechts et. al. (2016) regarding the tail 
dependence matrix.  Recall the definition of positive definiteness (for a matrix of dimension p): 

if 0 for all \px Rx x   0 , then R is positive definite. 
 
Because all of the (0,1) dependence measures described above are defined by 

, , , ,0 1 for all  and 1 and i j i i i j j iR i j R R R   = = , x Rx  can be written in quadratic form as  

(18) 
1

2

,

1 1 1

2
p p p

i j i j

i i j i

x Rx x R x x
−

= = = +

 = +   

As long as ,0 1 for all i jR i j   , that is, the coefficients on the cross terms (the second term of (18)) all 

remain BETWEEN 0 and 1, then  

(19) 
1

2

,

1 1 1

2 0  and so  0
p p p

i j i j

i i j i

x R x x x Rx
−

= = = +

+    , always, and so R is positive definite. 

In the p = 2 case, for example, R is positive definite if ( )2

1,1 1,1 2,2 1,20 and 0R R R R −  , which is always 

true when , ,0 1 for all  and 1i j i iR i j R   = .  For the boundary cases, if , 0 for all i jR i j=  , R 

obviously remains positive definite as the first term of (18) always is greater than zero and the second 

term disappears; and if , 1 for all i jR i j=  then R is positive semi-definite, although this case of perfect 

multivariate dependence is only textbook relevant.  In practice, empirically, positive semi-definiteness 
only is relevant as a boundary condition, as it relates to empirical matrices that approach singularity. 

 
26 Of course, these are maximal bounds and many conditions exist under which actual bounds are tighter.  For example, for 
Pearson’s under the equicorrelation matrix E (all equal correlations), the lower bound is -1/(dim[E] -1) rather than -1. 
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Consequently, this means that all dependence measures with values ranging from 0 to 1 are, in practice, 
positive definite, and that NAbC can be applied to them to define their finite sample distributions.  
Empirical examples of this are shown in the next section. 

Operationally, implementing NAbC on these (0, 1) measures is no different from implementing it on 
Pearson’s or Kendall’s or Spearman’s; the (0, 1) instead of (–1, 1) range does not even change how we 
reflect at the boundary when fitting the nonparametric kernel.  This is because specific cells of the 
Cholesky factor can validly be negative, making the assignation in the last line of the “Correlations to 
Angles” code in Table A above sometimes assign an angle value slightly above 𝛑/2, even though 𝛑/2 
corresponds to a measure value of zero.27  So this is a soft upper boundary in this case, even though the 
measure’s range of (0,1) typically is not.28  So when NAbC generates angle 𝛉, we continue to reflect based 

on: ( )if 0 then ;if  then 2         −   −  

since for measures with a (0,1) range, the upper bound of 𝛑 will never be reached, and the lower bound of 
zero remains valid and hard.  So NAbC applies in exactly the same way, for all of these positive definite 
dependence measures, whether their range of values is (–1, 1) or (0, 1). 

Finally, again note that the condition of symmetric positive definiteness holds not only for all relevant 
dependence measures, as shown above, but also under all relevant real-world data conditions: that is, 
multivariate financial returns data whose marginal distributions typically are characterized by different 
degrees of asymmetry, heavy-tailedness, (non-)stationarity, and serial correlation.  So this is a very weak 
and general condition, allowing for the extremely wide-ranging application of NAbC. 

 

Spectral and Angles Distributions 

I present below the angles distributions for some of the dependence measures discussed above, under 
simulated data reflecting challenging, real-world data conditions (see Opdyke, 2024a for the application 
of NAbC to a larger number of different data conditions).  Briefly, as above, the multivariate returns 
distribution of the simulated portfolio is generated based on the t-copula of Church (2012), with p=5 
assets, varying degrees of heavy-tailedness (df=3, 4, 5, 6, 7), skewness (asymmetry parameter=1, 0.6, 0, -
0.6, -1), non-stationarity (standard deviation=3σ, σ/3, σ; 1/3 observations each), and serial correlation 
(AR1=-0.25, 0, 0.25, 0.50, 0.75), with a block correlation structure shown in (20) below and n=126 

 
27 Note that angle values (which range from zero to 𝛑 on the hyper-hemisphere) decrease while dependence measure values 
increase, so a measure value of -1 corresponds to an angle value of 𝛑, a measure value of zero corresponds to an angle value 
of 𝛑/2, and a measure value of 1 corresponds to an angle value of zero (see Zhang et al., 2015 and Lu et al., 2019). 
 
28 On a related issue, note that Chatterjee’s correlation, for example, is bounded by (0,1) only asymptotically, and finite sample 
results can exceed these bounds.  However, when applying NAbC to this and other measures in hundreds of thousands of data 
simulations under widely varying conditions, as an empirical matter such finite sample exceedences never caused NAbC’s 
angles distributions to deviate from those of direct data simulations, nor made empirical matrices not positive definite. 
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observations, for half a year of daily returns.29  
 

(20)  
For verification purposes only, I compare those angles distributions based on the data simulation directly 
against those based on NAbC’s angle kernels, and in all cases the results are empirically 
indistinguishable.  The same is true for the spectral distributions, which I also present below against the 
Marchenko-Pastur distribution as a(n independence) baseline (see Marchenko and Pastur, 1967).  The 
empirical results yield both expected, and some additional interesting findings.   

First, note that the spread, and the spread and shifts, of both the spectral and angles distributions, 
respectively, are larger for Pearson’s than for Kendall’s, which is consistent with the former’s relative 
sensitivity to more extreme values under many conditions.  The shifts and spread of both measures are 
much larger than those of Chatterjee,30 although this is largely due to the fact that while Chatterjee is 
generally more powerful under dependence that is highly nonlinear and/or highly cyclical, it is less 
powerful under associations that are more monotonic, and the data conditions of this example fall more 
(but not entirely) into the latter category.  The story changes a bit when we use the dependence measure 
suggested by Zhang (2023), which is essentially a maximum between Spearman’s rho and Chatterjee’s 
correlation, its objective being to obtain large, if not the maximum power under both types of 
dependence structures (i.e. strong monotonic dependence as well as highly nonlinear/cyclical 
dependence).  This shows how readily NAbC can be applied to any (positive definite) dependence 
measure, and its utility for making cross-measure comparisons, all else equal, using the same, 
universally applicable method. 

 

 

 

 

 

 

 
29 Note again that this is only approximately Church’s (2012) copula, which incorporates varying degrees of freedom (heavy-
tailedness) and asymmetry, because I also impose serial correlation and non-stationarity on the data (and then empirically 
rescale the marginal densities). 
 
30 The symmetric version of Chatterjee’s correlation coefficient is used here (see Chatterjee, 2021), with the finite sample bias 
correction proposed by Dalitz et. al., 2024. 
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Graph 17: Spectral Distribution-NAbC Angles Kernel v Data Simulations v Marchenko Pastur 
          Pearson’s Rho           Kendall’s Tau     

   
    Chatterjee’s      Spearman’s Rho+Chatterjee 

  
 

Given all the mechanisms defined and verified above, I can now provide a complete example of the 
application of NAbC, checking all of the original seven objectives boxes, simultaneously. 

 

One Example: Kendall’s Tau p-values & Confidence Intervals, Unrestricted & Scenario-restricted 

Here I provide an example of the complete application of NAbC, for Kendall’s Tau, under two cases: 
unrestricted, and scenario-restricted.  NAbC provides both p-values and confidence intervals, at both 
the cell level and matrix level.  Solely for ease of replication, the data generating mechanism for this 
example is simply multivariate standard normal, with N=25k simulations and number of observations n = 
160.  The values of the matrix [A] are arbitrary, but correspond closely to those obtained when translating 
from a Pearson’s matrix example used in one of my previous and shorter NAbC publications, using 

( ) ( )2 arcsin r =  where r = Pearson’s, which is generally valid under elliptical data (and which is one of 

the reasons I used multivariate Gaussian data here; see McNeil et. al., 2005). 
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UNRESTRICTED CASE: Given a specified or well-estimated correlation matrix [A], and its specified or 
well-estimated data generating mechanism:

 

Q1. Confidence Intervals: What are the two correlation matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [A]?  What are, simultaneously, the individual 95% 
confidence intervals for each and every cell of [A]? 

Q2. Quantile Function: What is the unique correlation matrix associated with [B], a matrix of 
cumulative distribution function values associated with the corresponding cells of [A]?  

Q3. p-values: Under the null hypothesis that observed correlation matrix [C] was sampled from the data 
generating mechanism of [A], what is the p-value associated with [C]?  And simultaneously, what 
are the individual p-values associated with each and every cell of [C]? 

SCENARIO-RESTRICTED CASE: Under a specific scenario only selected pairwise correlation cells of [A] 
will vary (green), while the rest (red) are held constant, unaffected by the scenario (e.g. COVID).  This is 
matrix [D].

 

Q4. Confidence Intervals: What are the two correlation matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [D] (holding constant the non-selected red cells)?  
What are, simultaneously, the individual 95% confidence intervals for only those cells of [D] that are 
relevant to the scenario (green)? 

Q5. Quantile Function: What is the unique correlation matrix associated with [E], a matrix of 
cumulative distribution function values associated with the corresponding cells of [D]? 

Q6. p-values: Under the null hypothesis that observed correlation matrix [F] was sampled from the 
(scenario-restricted) data generating mechanism of [D], what is the p-value associated with [F] (with 
red cells held constant)?  And simultaneously, what are the individual p-values associated with 
every (non-constant, green) cell of [F]? 
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Answers to these questions require inference at both the cell and matrix levels, simultaneously and with 
cross-level consistency, as well as requiring the matrix-level quantile function, all under both the 
unrestricted and scenario-restricted cases, under any data conditions.  Only NAbC can simultaneously 
answer Q1.-Q6. above under general data conditions, as shown below in Table B. 

For Q1 and Q4, the two top matrices correspond to the first (matrix-level) question, and the bottom two 
matrices correspond to the second (cell-level) question.  Note the wider intervals on a cell-by-cell basis 
for the matrix-level confidence intervals compared to the cell-level confidence intervals, as expected.  
Also note, for Q3 and Q6, the smaller p-values for the individual cells compared to the respective matrix-
level p-values, which are larger, as expected, as they control the family-wise error rate (FWER).  Note also 
that the green cells of Q5 differ from the corresponding cells in Q2: even though the (green) angles 
distributions themselves remain unaffected by scenario restrictions, the ultimate correlation values of 

those cells ARE affected due to the matrix multiplication of the Cholesky factor, 
TR BB= .  Finally, note 

that the empirical values of the red cells in Q4-Q6 differ slightly from those in [D] and [F].  This is due to 
NAbC’s conservative use of the mean of the estimated angles (correlation) matrices, rather than 
presuming we know the absolute ‘true’ values of these cells (although this is justified in some specific 
cases). 

 

NAbC REMAINS “ESTIMATOR AGNOSTIC” 

Another important and useful characteristic of NAbC, only addressed so far as one of the original seven 
objectives, is that it remains “estimator agnostic,” that is, valid for use with any reasonable estimator of 
any of the dependence measures being modeled (e.g. Kendall’s or Pearson’s or Chatterjee’s, etc.).  
Different estimators will have different characteristics under different data conditions.  For example, 
some will provide minimum variance / maximum power, while others may provide unbiasedness or less 
bias, while others may provide more robustness, and/or different and shifting combinations of these 
characteristics.  Ideally, we would like to be able to use estimators that provide the best trade-offs for our 
purposes under the conditions most relevant to our given portfolio.  Fortunately, NAbC “works” for any 
estimator, as the relationship between correlations and angles requires only symmetric positive 
definiteness.  NAbC’s finite sample distribution and its resulting inferences obviously will inherit the 
advantages and disadvantages of the estimator being used, but this is generally an advantage as it 
provides flexibility to use the ‘best’ estimator under the widest possible range of conditions.31   

 
31 All empirical results herein use as the estimator the sample correlation matrix, as sample sizes all have exceeded 10p (10 
times the dimension of the matrix), which is a widely used threshold for whether a more sophisticated, bias-correcting 
estimator is needed (see Bongiorno, Challet, and Loeper, 2023).  When sample sizes do not meet this threshold, the 
covariance/correlation matrix estimation literature is rich and deep, but from among the many approaches, I have found the 
Average Oracle of Bongiorno, Challet, and Loeper (2023) to be among the most compelling theoretically, empirically, and in 
terms of practicality and transparency of usage under a wide range of real-world data conditions.  Notably, Average Oracle 
outperforms all flavors of non-linear shrinkage a la Ledoit and Wolf (2022a,b) (see Bongiorno and Challet, 2023). 
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NAbC AND GENERALIZED ENTROPY 

In a relevant and validating digression, it is intriguing and important to note that the (two-sided) cell-level 
p-values NAbC provides (see Q3 and Q6 in Table B above) actually can be used to construct a competitor 
to commonly used distance metrics, such as norms, and it has a number of advantages over them in this 
setting.  Some commonly used norms for measuring correlation ‘distances’ include the Taxi, 
Frobenius/Euclidean, and Chebyshev norms (collectively, the Minkowski norm), listed below in (21). 

         where x is a distance from a presumed or baseline correlation value, 
(21)                 d=number of observations, and m=1, 2, and ∞ correspond to the 
                 Taxi, Frobenius/Euclidean, and Chebyshev norms, respectively. 

All of these norms measure absolute distance from a presumed or baseline correlation value.  But the 
range of all relevant and widely used dependence measures is bounded, either from –1 to 1 or 0 to 1, and 
the relative impact and meaning of a given distance at the boundaries are not the same as those in the 
middle of the range.  In other words, a shift of 0.02 from an original or presumed correlation value of, say, 
0.97, means something very different than the same shift from 0.47.  NAbC’s p-values attribute 
probabilistic MEANING to these two different cases, while a norm would treat them identically, even 
though they very likely indicate what are very different events of very different relative magnitudes with 
potentially very different consequences. 

Therefore, a natural, PROBABILISTIC distance measure based directly on NAbC’s cell-level p-values is 
the natural log of the product of the p-values, dubbed ‘LNP’ in (22) below: 

(22)   ( )
1 1

"LNP" ln - = ln -  where 1 2
q q

i i

i i

p value p value q p p
= =

 
= = − 

 
   and - ip value is 2-sided. 

This was shown in a previous publication of this article, using a Pearson’s correlation matrix under the 
(Gaussian) identity matrix, to have a very strong correspondence with the entropy of the correlation 
matrix,32 defined by Felippe et al. (2021 and 2023) as (23) below: 

(23) 
( ) ( )

1

Entropy ln
p

j j

j

Ent R p  
=

= = −
 

where R is the sample correlation matrix and j are the p eigenvalues of the correlation matrix after it is 

scaled by its dimension, R/p.  Importantly, this result (23), like NAbC, is valid for ANY positive definite 
measure of dependence, not just Pearson’s.  Graph 18 below compares LNP to the entropy of the 
Kendall’s Tau matrix in 10,000 simulations under the Gaussian identity matrix.  The resulting Pearson’s 
correlation between them is 0.98 (virtually identical to the comparison of LNP based on Pearson’s rather 
than Kendall’s). 
 

 
32 The Pearson’s correlation between LNP and the entropy of Felippe et al. (2021 and 2023) was just under 0.99. 
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Graph 18: Identity Matrix Simulations – LNP (based on Kendall’s) v Entropy 

  

It is important to note, however, that entropy here is limited to being calculated relative to the case of 
independence, which for many dependence measures corresponds only with the identity matrix.33  In 
contrast, LNP can be calculated, and retains its meaning, in all cases, based on ANY values of the 
dependence matrix, not just the case of independence.  Yet the correspondence of LNP to entropy under 
this specific case speaks to LNP’s natural interpretation as a meaningful measure of 
deviation/distance/disorder (depending on your interpretation), and one that also is more flexible and 
granular than entropy as it is measured cell-by-cell, p(p-1)/2 times, as opposed to only p times for p 
eigenvalues.  As such, LNP might be considered a type of ‘generalized entropy’ relative to any baseline, as 
specified by the researcher (i.e. the specified dependence matrix), that is not necessarily perfect 
(in)dependence.  Such measures certainly are relevant in this setting as entropy has been used 
increasingly in the literature to measure, monitor, and analyze financial markets (see Meucci, 2010b, 
Almog and Shmueli, 2019, Chakraborti et al., 2020, and Vorobets, 2024a, 2024b, for several examples). 

Interpretations aside, the use of LNP here warrants further investigation as a matrix-level measure that, 
unlike widely used distance measures such as norms, has a solid and meaningful probabilistic 
foundation.  Its calculation applies not only beyond the independence case generally, but also to ALL 
positive definite measures of dependence, regardless of their values.  LNP’s range of application is as 
wide as that of NAbC’s matrix-level p-value, and the two are readily calculated side-by-side as they are 

 
33 Recall, of course, that a zero value for Pearson’s or Kendall’s or Spearman’s does not imply independence, but 
independence does imply a zero value for these measures. 
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both based on NAbC’s cell-level (two-sided) p-values for the entire matrix.  These are intriguing results 
with possibly far-reaching implications. 

 

NAbC AND CAUSAL MODELING 

In today’s rapidly evolving data science world, the tired mantra of “correlation is not causation” fails to 
advance our knowledge frontier, and even can be misleading in many cases.  While correlation is not 
causation, neither is it NOT causation!  In other words, strong association-based findings from methods 
like dependence measures far more often than not, when responsibly and rightly implemented, do, in 
fact, indicate causal mechanisms.  This is true even though the big data explosion of the past two 
decades can make silly and not-so-silly counterexamples seem almost the rule rather than the 
exception.  Without appropriate knowledge and implementation of critically important methods like 
multiple comparisons adjustments (see Hsu, 1999, and Westfall and Young, 1993, and Efron, 2004, 
2007a, 2007b), these counterexamples remain vulnerable strawmen for those who would dismiss or 
minimize association-based modeling (ABM), and over a century of statistical and econometric research, 
merely as inferior and limited prologue to the parousia of causal modeling (CM).  While this may be 
effective for promoting a causality book or a new related piece of software, it actually limits the 
advancement of our applied research knowledgebase, and even the advancement of CM, because it 
turns out that many of the most effective CM methods are built squarely on ABM methods (see Opdyke, 
2024b, for additional examples).  

“… a DAG structure recovering algorithm, which is based on the Cholesky factorization of the 
covariance matrix of the observed data (emphasis added).  …achieves the state-of-the-art 
performance.” Cai et al., 2023 

Even more importantly, while CM is not new, its widespread application is.  We are still learning critically 
important caveats and cautionary tales about the two primary causal paradigms when attempting their 
responsible application in real-world settings. 

“The clarion call for causal reduction in the study of capital markets is intensifying.  However, in 
self-referencing and open systems such as capital markets, the idea of unidirectional causation (if 
applicable) may be limiting at best, and unstable or fallacious at worst.” Polakow et al., 2023 

“Most of the literature on causality considers the structural framework of Pearl and the potential-
outcomes framework of Neyman and Rubin to be formally equivalent, and therefore 
interchangeably uses the do-notation and the potential-outcome subscript notation to write 
counterfactual outcomes.  In this paper, we … prove that structural counterfactual outcomes and 
potential outcomes do not coincide in general – not even in law.” De Lara, 2024. 

“… potential outcomes (PO) and structural causal models (SCMs) stand as the predominant 
frameworks.  However, these frameworks face notable challenges in practically modeling 
counterfactuals … we identify an inherent model capacity limitation, termed as the “degenerative 
counterfactual problem”, emerging from the consistency rule that is the cornerstone of both 
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frameworks.  …We hope it opens new avenues for future research of counterfactual modeling, 
ultimately enhancing our understanding of causality and its real-world applications.” Gong et al, 
2024 

“Try to come up with some form of efficient frontier for the 500 constituents of the SP500 with a 
causal model. Or ask yourself if that even make sense in the first place.”,  Alejandro Rodriguez 
Dominguez, 2024a, Causal Researcher, Head of Quantitative Analysis at Miraltabank 

In fact, CM arguably has hit a hype cycle, which endangers its responsible use in the medium to longer-
term future when it fails to live up to its over-hyped promise, at least in certain settings. 

“The explicit study of causality in AI fields has officially hit the ‘hype cycle’, at least according to 
Gartner” Grimbly, 2022, and Gartner, 2022 

Of course, all this is not to say that we shouldn’t aggressively pursue promising causality research (see 
Rodriguez Dominguez & Yadav, 2024, and Rodriguez Dominguez, 2024b), even in settings like finance 
where it may be extremely challenging to implement responsibly and reliably; only that we should avoid 
its hype cycle while doing so.  We need to refrain from setting up sometimes convenient, but largely 
useless “correlation vs causation” strawmen, which serve no real research purpose, and objectively and 
honestly keep causality’s very real limitations front-and-center when pursuing its rigorous application in 
challenging, real-world settings. 

So to say “correlation is not causation,” while true and very important for an introductory statistics 
course, most certainly is not the same as stating “association-based modeling is not causal modeling,” 
because, in fact, and in real-world practice, the lines here are rightly blurred, and the latter builds on the 
former, albeit within compelling and insightful and original paradigms that went underappreciated and 
underutilized for far too long. 

“…the distinction between prediction and causation, taken to its limit, melts away.” Daoud & 
Dubhashi, 2023 

Failing to recognize the blurred lines that melt away likely will limit the scope of applied CM research as 
we will miss opportunities to combine the best of both worlds (to the extent that they are distinct) to 
develop the most effective methods to tackle the hardest problems we face in real-world settings, 
especially in finance. 

Enter NAbC.  While unarguably an “ABM” method that broadens, enables, and enhances robust 
statistical inference in challenging, real-world financial settings, it, too, can be used to tackle questions 
posed within the causal paradigm(s).  NAbC’s broad range of application becomes critically important 
and useful here.  As shown above, NAbC remains valid for ANY dependence measure whose pairwise 
matrix is symmetric positive definite.  This includes many ASYMMETRIC, directional dependence 
measures, such as Chatterjee’s new correlation coefficient (Chatterjee, 2021), the improved Chatterjee’s 
coefficient (Xia et al, 2024), Zhang’s combined correlation measure (Zhang, 2023), the QAD measure of 
Junker et al. (2021), the asymmetric tail dependence measure (Deidda et al, 2023), and others.  Each of 
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these has different power under different dependence conditions, whether these are monotonic 
relationships or highly nonlinear relationships or highly cyclical relationships or asymmetric dependence 
in the extreme tails, or various combinations thereof.  But the important point here is that because these 
all are DIRECTIONAL, we can map their inferential results – that is, their individual, cell-level p-values – to 
the different variable effect classifications of the causal paradigm(s): the mediators, confounders, and 
colliders, as well as the vanilla causal and ‘caused by’ covariates (see MacKinnon & Lamp, 2021).  All it 
takes is two runs of NAbC, one in each ‘direction’; the subsequent mapping of results is exhaustive and 
mutually exclusive, so we can proceed with a rigorous, inferential analysis that identifies, 
probabilistically, the ‘causal’ relationships between the variables.   

But why do we need NAbC to do this?  This calculation can be done, albeit ineffectually, individually and 
directionally for each of the pairwise associations of a covariate with a treatment (X) and its dependent 
variable (Y) and all the other covariates.  NAbC’s important contribution here is that its inferences (p-
values) are based not merely on an isolated pairwise measure, but rather on the entire matrix of 
covariates, and their relationships with each other AND X and Y, simultaneously.34  While each of the 
angles distributions used by NAbC is independent of the others, the distributions of the associated 

correlation cells most certainly are not, due to 
TR BB= .  So the matrix-based approach, as opposed to 

the individual covariate-by-covariate approach, is critically important in this setting, because the 
pairwise (directional) matrices that correspond to a directed acyclic graph (DAG) are not merely groups of 
otherwise unrelated pairwise relationships: they are entire matrices of typically complex, intertwined, 
directional relationships, and the only viable way to attempt to recover the DAG accurately is to analyze 
the entire matrices simultaneously, which is what NAbC does. 

NAbC has been applied in this way to data generated by verified DAGs and preliminary classification 
rates appear very promising.  This is an area of further research and application and testing for NAbC.  But 
of course, none of this addresses the question of whether DAGs can be used reliably within “self-
referencing open systems like capital markets” (Polakow et al., 2023) to begin with; only that it appears 
NAbC can play a role in recovering them if the answer to this question is “yes” or “under some 
conditions.”35 

I’ll close this section with the cautionary note that setting is key here.  What may be an appropriate and 
relatively straightforward application of a causal framework in, say, a clinical trial setting, with provably 
viable assumptions and satisfied methodology constraints, may be wholly unjustified in a finance setting.  
Just because the mathematics can be coded and the computations performed doesn’t mean the 
underlying requirements are met or the presumptions are valid.  As with all (data) science, we must 
remain cognizant of these restrictions, especially in the face of the pressure exerted by hype cycles to 

 
34 Of course, multivariate regression models do this too, although they are addressing a somewhat different but closely related 
set of questions. 
 
35 Czado (2025) demonstrates that vine copulas, described above as being a very flexible and effective method for real-world 
portfolio simulation (if not dependence measure inference), also can be remarkably effective in the causal discovery setting. 
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market the next new thing.  The seminal works of Pearl (1996, 2000) and Angrist, Imbens, and Rubin 
(1996) obviously provided an extremely valuable paradigm shift that generated powerful new tools to 
address research questions not previously answerable, or at least only partially answerable.  But when 
they are presented as a separate and superior mode of inquiry, unrelated to all that has come before, 
researchers will end up limiting the very research they seek to promote.  Responsible researchers must 
resist these siren’s songs, eschew artificial, strawman divisions between causal and association-based 
modeling, and agnostically and scientifically embrace the most effective methodological combinations 
of both.  I look forward to further testing NAbC within the causal paradigm(s) to confirm that it can be 
classified as one of these ‘best of both’ methods. 

 

CONCLUSIONS 

NAbC defines the finite sample distributions of an extremely broad range of dependence measures – all 
those whose pairwise matrices are positive definite – under challenging, real-world financial data 
conditions (i.e non-iid multivariate returns data with varying degrees of asymmetry, (non-)stationarity, 
serial correlation, and heavy-tailedness in the margins).  Motivation for its development has been the 
need for a method that satisfies all seven of the objectives listed below, because to date, no extant 
method addressed all of these “real-world necessary” requirements simultaneously.  Yet anything less 
than this, when modeling dependence structure in our risk and investment portfolios, fails to rise to the 
same level of analytical rigor as has been applied to the other parameters of these models: that is 
indefensible given that its effects can be larger than many, if not all of the other parameters combined.  I 
list again the seven objectives below for the reader’s convenience:  

1. NAbC remains valid under challenging, real-world data conditions, with marginal asset distributions 
characterized by notably different and varying degrees of serial correlation, (non-)stationarity, heavy-
tailedness, and asymmetry36 

2. NAbC can be applied to ANY positive definite dependence measure, including those listed above  

3. NAbC remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures 

4. NAbC provides valid confidence intervals and p-values at both the matrix level and the pairwise cell 
level, with analytic consistency between these two levels (i.e. the confidence intervals for all the cells 
define that of the entire matrix, and the same is true for the p-values; this effectively facilitates attribution 
analyses) 

 
36 These obviously are not the only defining characteristics of such data, but from a distributional and inferential perspective, 
they remain some of the most challenging, especially when occurring concurrently as they do in non-textbook settings. 
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5. NAbC provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a 
(unique) correlation/dependence measure matrix, and back again, enabling precision in reverse 
scenarios and stress testing 

6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario 
or stress test – that is, unaffected by the scenario – thus enabling flexible, granular and realistic scenarios 

7. NAbC remains valid not just asymptotically, i.e. for sample sizes presumed to be infinitely large, but 
rather, for the specific sample sizes we have in reality,37 enabling reliable application in actual, real-world, 
non-textbook settings 

For the specific case of Pearson’s under the Gaussian identity matrix, NAbC allows me to provide an 
interactive spreadsheet that implements the fully analytic solution, with p-values and confidence 
intervals at both the cell and matrix levels (along with a measure of generalized entropy). 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

But way beyond Pearson’s, the fully general NAbC solution presented herein checks all seven boxes, 
simultaneously.  The list of critically important, applied research that NAbC now facilitates, if not makes 
possible, is not only expansive, but also feasible with an ease of use and interpretability, broad range of 
application, scalability, and robustness not found in other more limited (spectral) methods with narrow 
ranges of application.  What’s more, preliminary tests show NAbC to be directly usable and useful in 
causal modeling, further expanding its already comprehensive scope. 

With NAbC, we now have a powerful, applied approach enabling us to treat an extremely broad class of 
ubiquitous dependence measures with the same level of analytical rigor as the other major parameters in 
our (finite sample) financial portfolio models.  We can use NAbC in frameworks that identify, 
probabilistically measure and monitor, and even anticipate critically important events, such as 
correlation breakdowns, and mitigate and manage their effects.  It should prove to be a very useful 
means by which we can better understand, predict, and manage portfolios in our multivariate world. 

 

 

 

 

 

 
37 This is conditional upon n>p, that is, the matrix is full rank, with more observations than assets.  It cannot be positive definite 
otherwise. 
 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
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