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Post 4 of 4: ANY Positive Definite Measure, ALL Real-World Financial Data Conditions 

NOTE: These posts summarize a chapter in my forthcoming monograph for Cambridge University Press. 

 

Introduction 

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, 
allocation, forecasting, and risk analysis, simply is not possible without explicitly modeling the 
dependence structure of their assets.  Dependence structure can drive portfolio results more than many 
other parameters in investment and risk models – sometimes even more than their combined effects – 
but the literature provides relatively little to define the finite-sample distributions of dependence 
measures in useable and useful ways under challenging, real-world financial data conditions.  Yet this is 
exactly what is needed to make valid inferences about their estimates, and to use these inferences for a 
myriad of essential purposes, such as hypothesis testing, dynamic monitoring, realistic and granular 
scenario and reverse scenario analyses, and mitigating the effects of correlation breakdowns during 
market upheavals (which is when we need valid inferences the most). 

This is the fourth in a series of four posts which introduces a new and straightforward method – 
Nonparametric Angles-based Correlation (“NAbC”) – for defining the finite-sample distributions of a very 
wide range of dependence measures for financial portfolio analysis.  These include ANY that are positive 
definite, such as the foundational Pearson’s product moment correlation matrix (Pearson, 1895), rank-
based measures like Kendall’s Tau (Kendall, 1938) and Spearman’s Rho (Spearman, 1904), as well as 
measures designed to capture highly non-linear dependence such as the tail dependence matrix (see 
Embrechts, Hofert, and Wang, 2016, and Shyamalkumar and Tao, 2020), Chatterjee’s correlation 
(Chatterjee, 2021), Lancaster’s correlation (Holzmann and Klar, 2024), and Szekely’s distance correlation 
(Szekely, Rizzo, and Bakirov, 2007) and their many variants (such as Sejdinovic et al., 2013, and Gao and 
Li, 2024).1  

 
1 Note that “positive definite” throughout these four posts refers to the dependence measure calculated on the matrix of all 
pairwise associations in the portfolio, that is, calculated on a bivariate basis.  Some of these dependence measures (eg 
Szekely’s correlation and variants of Chatterjee’s) can be applied on a multivariate basis, in arbitrary dimensions, for example, 
to test the hypothesis of multivariate independence.  But “positive definite” herein is not applied in this sense, and I explain 
below some of the reasons for using the dependence framework of all pairwise associations, which is highly flexible, and 
allows for more precise attribution and intervention analyses.  
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This Post 4 expands NAbC’s application beyond Pearson’s to ANY positive definite dependence measure, 
under any values, and under all challenging, real-world financial data conditions. 

POST 1: NAbC introduced. 
POST 2: NAbC applied to Pearson’s under the Gaussian identity matrix (fully analytic solution). 
POST 3: NAbC applied to Pearson’s under ALL correlation matrix values and ALL relevant, challenging, 
real-world financial returns data conditions.2  
POST 4: NAbC applied to ALL matrix values and ALL positive definite measures of portfolio dependence 
under ALL relevant, challenging, real-world financial data conditions. 

 

Correlations and Angles (Review of Posts 2 & 3) 

To briefly review from Posts 2 & 3, I defined and reviewed the relationship between the correlation cells in 
a Pearson’s correlation matrix and the angles of their corresponding pairwise data vectors.  There exists 
an angle value for every correlation value in the matrix.  For a single, bivariate correlation, this can be 
seen directly via the widely used cosine similarity in (1),3 but the matrix analog also is well established in 
the literature as shown in (2.a) and (2.b) (see Pinheiro and Bates, 1996,  Rebonato & Jaeckel, 2000, 
Rapisarda et al., 2007, and Pourahmadi and Wang, 2015, but note a typo in the formula in Pourahmadi 
and Wang, 2015 corresponding to (2.b) below): 
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2 I take ‘real-world’ financial returns data to be multivariate with marginal distributions that vary notably from each other in 
their degrees of heavy-tailedness, serial correlation, asymmetry, and (non-)stationarity.  These obviously are not the only 
defining characteristics of such data, but from a distributional and inferential perspective, they remain some of the most 
challenging, especially when occurring concurrently as they do in non-textbook settings. 
 
3 While r typically is used to represent Pearson’s calculated on a sample, ρ often is used to represent Pearson’s calculated on a 
population. 
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 where  is the Cholesky factor (defined in Post 2) of  andtR BB B R=  
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(2.b) To obtain an individual correlation, ,i jr , we have, simply from 
TR BB= : 
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This relationship is one-to-one and bi-directional.  I present below straightforward SAS/IML code 
translating correlations to angles (2.a) and angles to correlations (2.b) in Table A. 

The above all is well-established and straightforward.  But why are we interested in these angles in this 
setting?  There are several very important reasons: 

A. Because they are derived based on the matrix’s Cholesky factor, the angles, unlike the correlations 
themselves, are forced on to the unit hyper-(hemi)sphere, where positive definiteness automatically is 
enforced.  This is necessary for efficient sampling, as well as for direct and proper definition of the 
multivariate sample space (see Post 2 for more detail on this). 

B. Crucially, the distributions of all of the angles are independent, which makes sampling, and more 
importantly, construction of their multivariate distribution (and that of the translated correlation matrix), 
straightforward and useable, where it otherwise would remain intractable. 

 

 
4 Note that a similar recursive relationship exists between partial correlations (Madar, 2015), although its sample-generating 
algorithm it is not generalizable beyond Pearson’s correlations, ie to all positive definite measures of dependence, as shown in 
my upcoming Post 4. 
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TABLE A:  

 

C. The angles contain all information regarding dependence structure (see Fernandez-Duren & 
Gregorio-Dominguez, 2023, and Zhang & Songshan, 2023, as well as Opdyke, 2024).  On the UNIT hyper-
(hemi)sphere, the only thing we lose is scale, but scale does not and should not matter for any useful and 
useable measure of dependence.5 

D. Finally, angles distributions are more robust and much better behaved than spectral distributions, 
and unlike the latter, are at the right level of aggregation for granular scenarios (for examples of the 
dramatic changes of spectral distributions under heavy-tails, see Opdyke, 2024, Burda et al., 2004, Burda 
et al., 2006, Akemann et al., 2009; Abul-Magd et al., 2009, Bouchaud & Potters, 2015, Martin & Mahoney, 
2018), and under serial correlation, see Opdyke, 2024, and Burda et al., 2004, 2011).  As discussed in 
Post 3, I present some empirical examples of this in numerous graphs below under real-world financial 
data conditions. 

 
5 Scale invariance is widely proved and cited for Pearson’s rho, Kendall’s tau, and Spearman’s rho (see Xu et al., 2013, and 
Schreyer et al., 2017 for examples). 
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Fortunately, all of the above advantages of relying on angle values hold not only for Pearson’s matrix, but 
for ANY positive definite dependence measure, under ANY data conditions found in challenging, real-
world financial settings.  

 

Beyond Pearson’s: Finite Sample Distribution of ANY Positive Definite Dependence Measure 

In Post 3 I discuss in more depth why angles distributions are far more appropriate than spectral 
(eigenvalue) distributions for solving this particular problem, and so do not revisit this comparison here 
other than to reemphasize points A.-D. above.  In this Post 4 I focus on the fact that the only condition 
required for the relationships between angles and dependence measure values, as shown in (2.a) and 
(2.b) above, is the symmetric positive definiteness of the dependence measure.  Because this approach 
uses the framework of all pairwise comparisons, measuring dependence on a bi-variate basis, the 
requirement of symmetric positive definiteness, more precisely, is the symmetric positive definiteness of 
the matrix of the dependence measure calculated on every pairwise association of the all the assets in 
the portfolio.  This distinction is important to make as many dependence measures can be calculated not 
only on a bi-variate basis, but also on a multivariate basis, such as Szekely’s distance correlation 
(Szekely, Rizzo, and Bakirov, 2007)  and variants of Chatterjee’s correlation (see Huang et al., 2022, 
Gamboa et al., 2022, Fuchs, 2024, and Pascual-Marqui et al., 2024, as well as Chatterjee, 2022 for a 
summary of the recent literature on multivariate measures).  We keep to the framework of the all-pairwise 
matrix here for numerous reasons: as discussed in Post 3, these include tremendous flexibility, ease and 
directness of application, ease, if not increased power, in estimation, and ease and transparency in 
intervention and what-if analyses.  But the main point here is that all references to positive definiteness 
herein and below refer to the framework of the all-pairwise matrix. 

This positive definiteness (numerical issues aside) has been long proven for the “the big three,” that is, for 
the three most widely used dependence measures – Pearson’s rho, Kendall’s tau, and Spearman’s rho 
(see Sabato et al., 2007).  The values of these measures all range from  –1 to 1,6 but many other measures 
range from 0 to 1.  These include Szekely’s, Lancaster’s, the Tail Dependence Matrix, Chatterjee’s and its 
many variants (see Gao and Li, 2024) and many others.  Proving that these, too, are positive definite is 
very straightforward, and was done by Embrechts et. al. (2016) regarding the tail dependence matrix.  
Recall the definition of positive definiteness (for a matrix of dimension p): 

if 0 for all \px Rx x   0 , then R is positive definite. 
 
Because all of the (0,1) dependence measures described above are defined by 

, , , ,0 1 for all  and 1 and i j i i i j j iR i j R R R   = = , 

 
6 Of course, these are maximal bounds and many conditions exist under which actual bounds are tighter.  For example, for 
Pearson’s under the equicorrelation matrix E (all equal correlations), the lower bound is -1/(dim[E] -1) rather than -1. 
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x Rx  can be written in quadratic form as  
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In the p = 2 case, for example, R is positive definite if ( )2

1,1 1,1 2,2 1,20 and 0R R R R −  , which is always 

true when , ,0 1 for all  and 1i j i iR i j R   = .  For the boundary cases, if , 0 for all i jR i j=  , R 

obviously remains positive definite as the first term of (3) always is greater than zero and the second term 

disappears; and if , 1 for all i jR i j=  then R is positive semi-definite, although this case of perfect 

multivariate dependence is only textbook relevant.  In practice, empirically, positive semi-definiteness 
only is relevant as a boundary condition, as it relates to empirical matrices that approach singularity. 

Consequently, this means that all dependence measures with values ranging from 0 to 1 are, in practice, 
positive definite, and that NAbC can be applied to them to define their finite sample distributions.  
Empirical examples of this are shown in the next section. 

Operationally, implementing NAbC on these (0, 1) measures is no different from implementing it on 
Pearson’s or Kendall’s or Spearman’s; the (0, 1) instead of (–1, 1) range does not even change how we 
reflect at the boundary when fitting the nonparametric kernel.  This is because specific cells of the 
Cholesky factor can validly be negative, making the assignation in the last line of the “Correlations to 
Angles” code above sometimes assign an angle value slightly above 𝛑/2, even though 𝛑/2 corresponds to 
a measure value of zero.7  So this is a soft upper boundary in this case, even though the measure’s range 
of (0,1) is not.8  So when NAbC generates angle 𝛉, we continue to reflect based on  
 

( )if 0 then ;if  then 2         −   −  

since for measures with a (0,1) range, the upper bound of 𝛑 will never be reached, and the lower bound of 

 
7 Note that angle values (which range from zero to 𝛑 on the hyper-hemisphere) decrease while dependence measure values 
increase, so a measure value of -1 corresponds to an angle value of 𝛑, a measure value of zero corresponds to an angle value 
of 𝛑/2, and a measure value of 1 corresponds to an angle value of zero (see Zhang et al., 2015 and Lu et al., 2019). 
 
8 On a related issue, note that Chatterjee’s correlation, for example, is bounded by (0,1) only asymptotically, and finite sample 
results can exceed these bounds.  However, when applying NAbC to this and other measures in hundreds of thousands of data 
simulations under widely varying conditions, as an empirical matter such finite sample exceedences never caused NAbC’s 
angles distributions to deviate from those of direct data simulations, nor made empirical matrices not positive definite. 
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zero remains valid and hard.  So NAbC applies in exactly the same way, for all of these positive definite 
dependence measures, whether their range of values is (–1, 1) or (0, 1). 

Finally, again note that the condition of symmetric positive definiteness holds not only for all relevant 
dependence measures, as shown above, but also under all relevant real-world data conditions: that is, 
multivariate financial returns data whose marginal distributions typically are characterized by different 
degrees of asymmetry, heavy-tailedness, (non-)stationarity, and serial correlation.  So this is a very weak 
and general condition, allowing for the extremely wide-ranging application of NAbC. 

 

Finite Sample Distribution for ANY Dependence Measure, Under ANY Real-world Data Conditions 

I present below the angles distributions for some of the dependence measures discussed above, under 
challenging, real-world data conditions (see Opdyke, 2024 for the application of NAbC to a large number 
of different data conditions).  Briefly, the multivariate returns distribution of the portfolio in this case is 
generated based on the t-copula of Church (2012), with p=5 assets, varying degrees of heavy-tailedness 
(df=3, 4, 5, 6, 7), skewness (asymmetry parameter=1, 0.6, 0, -0.6, -1), non-stationarity (standard 
deviation=3σ, σ/3, σ; 1/3 observations each), and serial correlation (AR1=-0.25, 0, 0.25, 0.50, 0.75), with 
a block correlation structure shown in (5) below and n=126 observations, for half a year of daily returns.9  

(5)  
 
For verification purposes only, I compare those angles distributions based on the data simulation directly 
against those based on NAbC’s angle kernels, and in all cases the results are empirically 
indistinguishable.  The same is true for the spectral distributions, which I also present below against the 
Marchenko-Pastur distribution as a(n independence) baseline (see Marchenko and Pastur, 1967).  The 
empirical results yield both expected, and some additional interesting findings.   

First, note that the spread, and the spread and shifts, of both the spectral and angles distributions, 
respectively, are larger for Pearson’s than for Kendall’s, which is consistent with the former’s relative 
sensitivity to more extreme values under many conditions.  The shifts and spread of both measures are 
much larger than those of Chatterjee,10 although this is largely due to the fact that while Chatterjee is 
generally more powerful under dependence that is highly nonlinear and/or highly cyclical, it is less  

 
9 Note that this is only approximately Church’s (2012) copula, which incorporates varying degrees of freedom (heavy-
tailedness) and asymmetry, because I also impose serial correlation and non-stationarity on the data (and then empirically 
rescale the marginal densities). 
 
10 The symmetric version of Chatterjee’s correlation coefficient is used here (see Chatterjee, 2021), with the finite sample bias 
correction proposed by Dalitz et. al., 2024. 

1 -0.3 -0.3 0.2 0.2

-0.3 1 -0.3 0.2 0.2

-0.3 -0.3 1 0.2 0.2

0.2 0.2 0.2 1 0.7

0.2 0.2 0.2 0.7 1
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Graph 1: Spectral Distribution-NAbC Angles Kernel v Data Simulations v Marchenko Pastur 
          Pearson’s Rho           Kendall’s Tau     

   
 
    Chatterjee’s      Spearman’s Rho+Chatterjee 

  

powerful under associations that are more monotonic, and the data conditions of this example fall more 
(but not entirely) into the latter category.  The story changes a bit when we use the dependence measure 
suggested by Zhang (2023), which is essentially a maximum between Spearman’s rho and Chatterjee’s 
correlation, the objective being to obtain large, if not the maximum power under both types of 
dependence structures (i.e. strong monotonic dependence as well as highly nonlinear/cyclical 
dependence).  This shows how readily NAbC can be applied to any (positive definite) dependence 
measure, and its utility for making cross-measure comparisons, all else equal, using the same, 
universally applicable method. 

Post 3 covers in detail NAbC’s calculation of the dependence measure’s cell level and matrix level p-
values and confidence intervals, which I will not be repeat here because it is identical regardless of the 
dependence measure being examined (Post 3 covered only Pearson’s matrix).  However, I take the 
example from Post 3 for Pearson’s matrix, which included such p-values and confidence intervals, and 
recreate it here using Kendall’s Tau.  Matrix input values necessarily are slightly different, but all other 
aspects of the example remain the same to demonstrate the apples-to-apples seamless application of  
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Graphs 1-5:  Angles Distributions--NAbC Angles Kernel v Data Simulations v Identity Matrix 

             Pearson’s Rho           Kendall’s Tau            Chatterjee’s           Spearman’s Rho+Chatterjee 
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Graphs 6-10: Angles Distributions--NAbC Angles Kernel v Data Simulations v Identity Matrix 

              Pearson’s Rho           Kendall’s Tau            Chatterjee’s           Spearman’s Rho+Chatterjee 
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NAbC across different dependence measures. 11 

 

NAbC Applied with Kendall’s: Unrestricted + Scenario-Restricted p-values and Confidence Intervals 

Below I apply NAbC to obtain both p-values and confidence intervals, for Kendall’s Tau, under two cases: 
unrestricted, and scenario-restricted.  Solely for ease of replication, the data generating mechanism for 
these examples is simply multivariate standard normal, with N=25k simulations and number of 
observations n = 160. 

UNRESTRICTED CASE: Given a specified or well-estimated correlation matrix [A], and its specified or 
well-estimated data generating mechanism:

 

Q1. Confidence Intervals: What are the two correlation matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [A]?  What are, simultaneously, the individual 95% 
confidence intervals for each and every cell of [A]? 

Q2. Quantile Function: What is the unique correlation matrix associated with [B], a matrix of 
cumulative distribution function values associated with the corresponding cells of [A]?  

Q3. p-values: Under the null hypothesis that observed correlation matrix [C] was sampled from the data 
generating mechanism of [A], what is the p-value associated with [C]?  And simultaneously, what 
are the individual p-values associated with each and every cell of [C]? 

SCENARIO-RESTRICTED CASE: Under a specific scenario only selected pairwise correlation cells of [A] 
will vary (green), while the rest (red) are held constant, unaffected by the scenario (e.g. COVID).  This is 

 
11 Values used here for Kendall’s matrix were close to those obtained when translating from the Post 3 Pearson’s example using 

( ) ( )2 arcsin r =  where r = Pearson’s, which is generally valid under elliptical data (which is one of the reasons I used 

multivariate Gaussian data here; see McNeil et. al., 2005). 
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matrix [D].

 

Q4. Confidence Intervals: What are the two correlation matrices that correspond to the lower– and 
upper–bounds of the 95% confidence interval for [D] (holding constant the non-selected red cells)?  
What are, simultaneously, the individual 95% confidence intervals for only those cells of [D] that are 
relevant to the scenario (green)? 

Q5. Quantile Function: What is the unique correlation matrix associated with [E], a matrix of 
cumulative distribution function values associated with the corresponding cells of [D]? 

Q6. p-values: Under the null hypothesis that observed correlation matrix [F] was sampled from the 
(sencario-restricted) data generating mechanism of [D], what is the p-value associated with [F] (with 
red cells held constant)?  And simultaneously, what are the individual p-values associated with 
every (non-constant, green) cell of [F]? 

Answers to these questions require inference at both the cell- and matrix-levels, simultaneously and with 
cross-level consistency, as well as requiring the matrix-level quantile function, all under both the 
unrestricted and scenario-restricted cases, under any data conditions.  Only NAbC can simultaneously 
answer Q1.-Q6. above under general data conditions, as shown below. 
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For Q1 and Q4, the two top matrices correspond to the first (matrix-level) question, and the bottom two 
matrices correspond to the second (cell-level) question.  Note the wider intervals on a cell-by-cell basis 
for the matrix-level confidence intervals compared to the cell-level confidence intervals, as expected.  
Also note, for Q3 and Q6, the smaller p-values for the individual cells compared to the respective matrix-
level p-values, which are larger, as expected, as they control the family-wise error rate (FWER – see Post 
3).  Note also that the green cells of Q5 differ from the corresponding cells in Q2: even though the (green) 
angles distributions themselves remain unaffected by scenario restrictions, the ultimate correlation 

values of those cells ARE affected due to the matrix multiplication of the Cholesky factor, 
TR BB= .  

Finally, note that the empirical values of the red cells in Q4-Q6 differ slightly from those in [D] and [F].  
This is due to NAbC’s conservative use of the mean of the estimated correlation matrices, rather than 
presuming we know the absolute ‘true’ values of these cells (although this is justified in some specific 
cases). 

 

NAbC Remains “Estimator Agnostic” 

Although this has been covered in previous Posts, it bears repeating that, regardless of the dependence 
measure being used, NAbC remains “estimator agnostic,” that is, valid for use with any reasonable 
estimator of that dependence structure.  Different estimators will have different characteristics under 
different data conditions.  For example, some will provide minimum variance / maximum power, while 
others may provide unbiasedness or less bias, while others may provide more robustness, and/or 
different and shifting combinations of these characteristics.  Ideally, we would like to be able to use 
estimators that provide the best trade-offs for our purposes under the conditions most relevant to our 
given portfolio.  Fortunately, NAbC “works” for any estimator, as the relationship between correlations 
and angles requires only symmetric positive definiteness.  NAbC’s finite sample distribution and its 
resulting inferences obviously will inherit the advantages and disadvantages of the estimator being used, 
but this is generally an advantage as it provides flexibility to use the ‘best’ estimator under the widest 
possible range of conditions.   

 

LNP: A Generalized Entropy for All Positive Definite Dependence Measures 

The (two-sided) p-values NAbC provides (see Q3 and Q6 above, and Post 3 for details) actually can be 
used to construct a competitor to commonly used distance metrics, such as norms (e.g. Taxi, 
Frobenius/Euclidean, and Chebyshev norms: see Post 3 for definitions), and has a number of advantages 
over them in this setting.  Norms measure absolute distance from a presumed or baseline correlation 
value.  But the range of all relevant and widely used dependence measures is bounded, either from –1 to 
1 or 0 to 1, and the relative impact and meaning of a given distance at the boundaries are not the same as 
those in the middle of the range.  In other words, a shift of 0.01 from an original or presumed correlation 
value of, say, 0.97, means something very different than the same shift from 0.07.  NAbC’s p-values 
attribute probabilistic MEANING to these two different cases, while a norm would treat them identically, 
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even though they very likely indicate what are very different events of very different relative magnitudes 
with potentially very different consequences. 

Therefore, a natural, PROBABILISTIC distance measure based directly on NAbC’s cell-level p-values is 
the natural log of the product of the p-values, dubbed ‘LNP’ in (6) below: 

(6)   ( )
1 1

"LNP" ln - = ln -  where 1 2
q q

i i

i i

p value p value q p p
= =

 
= = − 

 
   and - ip value is 2-sided. 

This was shown in Post 2, using a Pearson’s correlation matrix under the (Gaussian) identity matrix, to 
have a very strong correspondence with the entropy of the correlation matrix, defined by Felippe et al. 
(2021 and 2023) as (7) below: 

(7) 
( ) ( )

1

Entropy ln
p

j j

j

Ent R p  
=

= = −
 

where R is the sample correlation matrix and j  are the p eigenvalues of the correlation matrix after it is 
scaled by its dimension, R/p.  Importantly, this result (7), like NAbC, is valid for ANY positive definite 
measure of dependence, not just Pearson’s.  Graph 12 below compares LNP to the entropy of the 
Kendall’s Tau matrix in 10,000 simulations under the Gaussian identity matrix.  The resulting Pearson’s 
correlation between them is 0.98. 

Graph 12: Identity Matrix Simulations – LNP (based on Kendall’s) v Entropy 

  



JD Opdyke, Chief Analytics Officer Page 15 of 19 Beating the Correlation Breakdown: Post 3 of 4 
 

It is important to note, however, that entropy here is limited to being calculated relative to the case of 
independence, which for many dependence measures corresponds only with the identity matrix.12  In 
contrast, LNP can be calculated and retains its meaning in all cases, based on ANY values of the 
dependence matrix, not just the case of independence.  Yet the correspondence of LNP to entropy under 
this specific case speaks to LNP’s natural interpretation as a meaningful measure of 
deviation/distance/independence/disorder (depending on your interpretation), and one that also is more 
flexible and granular than entropy as it is measured cell-by-cell, p(p-1)/2 times, as opposed to only p 
times for p eigenvalues.  As such, LNP might be considered a type of ‘generalized entropy’ relative to any 
baseline, as specified by the researcher (i.e. the specified dependence matrix), that is not necessarily 
perfect (in)dependence.  Such measures certainly are relevant in this setting as entropy has been used 
increasingly in the literature to measure, monitor, and analyze financial markets (see Meucci, 2010, 
Almog and Shmueli, 2019, Chakraborti et al., 2020, and Vorobets, 2024a, 2024b, for several examples). 

Interpretations aside, the use of LNP here warrants further investigation as a matrix-level measure that, 
unlike widely used distance measures such as norms, has a solid and meaningful probabilistic 
foundation.  Its calculation applies not only beyond the independence case generally, but also to ALL 
positive definite measures of dependence, regardless of their values.  LNP’s range of application is as 
wide as that of NAbC’s matrix-level p-value, and the two are readily calculated side-by-side as they are 
both based on NAbC’s cell-level (two-sided) p-values for the entire matrix.  These are intriguing results 
with possibly far-reaching implications. 

 

Conclusion 

In Posts 1,2, and 3 I listed the seven characteristics of the full NAbC solution that, taken together, are 
shared by no other approach, and for completeness I list them again below: 

1. validity under challenging, real-world financial data conditions, with marginal asset distributions 
characterized by notably different degrees of serial correlation, non-stationarity, heavy-tailedness, and 
asymmetry 

2. application to ANY positive definite dependence measure, including, for example, Pearson’s product 
moment correlation, rank-based measures like Kendall’s tau and Spearman’s rho, the kernel-based 
generalization of Szekely’s distance correlation, and the tail dependence matrix, among others.   

3. it remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures 

4. it provides valid confidence intervals and p-values at both the matrix-level and the pairwise cell-level, 
with analytic consistency between these two levels (i.e. the confidence intervals for all the cells define 

 
12 Recall, of course, that a zero value for Pearson’s or Kendall’s or Spearman’s does not imply independence, but 
independence does imply a zero value for these measures. 
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that of the entire matrix, and the same is true for the p-values; this also effectively facilitates attribution 
analyses) 

5. it provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a (unique) 
correlation (dependence measure) matrix, and back again, enabling precision in reverse scenarios and 
stress testing 

6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario 
or stress test, while the rest are allowed to vary, enabling granular and realistic scenarios 

7. it remains valid not just asymptotically, i.e. for sample sizes presumed to be infinitely large, but rather, 
for the specific sample sizes we have in reality, enabling reliable application in actual, imperfect, non-
textbook settings 

Post 2 provided, for Pearson’s under the Gaussian identity matrix, an interactive spreadsheet that 
implements fully analytic p-values and confidence intervals  

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

and combined with Post 3, both cover all but 2. in the list above.  This Post 4 covers 2. above, expanding 
NAbC’s range of application to ALL positive definite measures of dependence, with any values, under all 
real-world data conditions.   

The objective of this work has been to provide a method that checks all of these boxes – 1. Through 7. – 
simultaneously, which is what is required for useful and useable portfolio analytics in real-world, non-
textbook settings.  The list of critically important, applied research that NAbC now facilitates, if not 
makes possible, is not only expansive, but also feasible with an ease of use and interpretability, broad 
range of application, scalability, and robustness not found in other more limited (spectral) methods with 
narrow ranges of application.  

With NAbC, we now have a powerful, applied approach enabling us to treat an extremely broad class of 
widely used dependence measures just like the other major parameters in our (finite sample) financial 
portfolio models.  We can use NAbC in frameworks that identify, measure and monitor, and even 
anticipate critically important events, such as correlation breakdowns, and mitigate and manage their 
effects.  It should prove to be a very useful means by which we can better understand, predict, and 
manage portfolios in our multivariate world. 

 

 

 

 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
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