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Introduction 

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, allocation, 
forecasting, and risk analysis, simply is not possible without explicitly modeling the dependence structure of their 
assets. 

Many different measures of dependence structure are widely used, including the foundational Pearson’s product 
moment correlation matrix, rank-based measures like Kendall’s Tau and Spearman’s Rho, as well as measures 
designed to capture highly non-linear dependence such as the tail dependence matrix, Chatterjee’s correlation, 
Lancaster’s correlation, and Szekely’s distance correlation and their many variants. 

While dependence structure can drive portfolio results more than many other parameters in investment and risk 
models – sometimes even more than their combined effects –the literature provides relatively little to define the finite-
sample distributions of these dependence measures under challenging, real-world data conditions.  Yet this is exactly 
what is needed to make valid inferences about their estimates, and to use these inferences for a myriad of essential 
purposes, such as hypothesis testing, dynamic monitoring, realistic and granular scenario and reverse scenario 
analyses, and mitigating the effects of correlation breakdowns during market upheavals (which is when we need valid 
inferences the most). 

This is the Introduction to a series of four posts that present a straightforward method– Nonparametric Angles-based 
Correlation (“NAbC”) – for defining the finite-sample distributions of a very wide range of dependence measures for 
portfolio analysis.  The next post starts with a fully analytic solution for a narrow but foundational case (with a link 
provided to an interactive, downloadable spreadsheet), and sequentially expands NAbC’s application in each post to 
eventually cover ANY positive definite dependence measure (including and beyond those listed above).  NAbC 
remains highly flexible and straightforward in its implementation, yet robustly unaffected and unrestricted by the 
distributional challenges of real-world financial returns (see 1. in pdf below).   

Motivation for NAbC’s development has been its effective application for real-world financial portfolios (as opposed 
to textbook settings), so the solution is characterized by seven critically necessary results that no other method 
provides simultaneously:   

1. validity under challenging, real-world data conditions, with marginal asset distributions characterized by notably 
varying degrees of serial correlation, non-stationarity, heavy-tailedness, and asymmetry 

2. application to ANY positive definite dependence measure, including, for example, Pearson’s product moment 
correlation, rank-based measures like Kendall’s tau and Spearman’s rho, the kernel-based generalization of Szekely’s 
distance correlation, and the tail dependence matrix, among others.   



3. it remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to estimate any of the 
above-mentioned dependence measures 

4. it provides valid confidence intervals and p-values at both the matrix-level and the pairwise cell-level, with analytic 
consistency between these two levels (ie the confidence intervals for all the cells define that of the entire matrix, and 
the same is true for the p-values; this effectively facilitates attribution analyses) 

5. it provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a (unique) correlation 
(dependence measure) matrix, and back again, enabling precision in reverse scenarios and stress testing 

6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario or stress 
test, enabling granular and realistic scenarios 

7. it remains valid not just asymptotically, ie for sample sizes presumed to be infinitely large, but rather, for the 
specific sample sizes we have in reality, enabling reliable application in actual, imperfect, non-textbook settings 

To date, financial portfolio analysis in practice very often relies on ad hoc, largely qualitative, and ‘judgmental’ 
approaches to specifying and utilizing dependence structure, and when quantitative approaches are used, their valid 
application largely has been restricted to narrow cases.  But practitioners, academics, and regulators have a long 
history of bringing analytic and probabilistic rigor to bear when estimating and analyzing the other parameters of our 
portfolio risk and investment models.  Given that dependence structure often drives our portfolio results as much or 
more than many of those parameters, how can we settle for anything less than this same level of rigor when it comes 
to modeling our dependence structure?  Tune in to the next post for an answer to this (semi)rhetorical question. 
 

 


