Beating the Correlation Breakdown, for Pearson’s and Beyond:
Robust Inference and Flexible Scenarios and Stress Testing for Financial Portfolios

Post 1 of 4: INTRODUCTION

JD Opdyke, Chief Analytics Officer, Partner, Sachs Capital Group Asset Management, LLC
JDOpdyke@gmail.com

NOTE: These posts summarize a chapter in my forthcoming monograph for Cambridge University Press.

Introduction

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, allocation,
forecasting, and risk analysis, simply is not possible without explicitly modeling the dependence structure of their
assets.

Many different measures of dependence structure are widely used, including the foundational Pearson’s product
moment correlation matrix, rank-based measures like Kendall’s Tau and Spearman’s Rho, as well as measures
designed to capture highly non-linear dependence such as the tail dependence matrix, Chatterjee’s correlation,
Lancaster’s correlation, and Szekely’s distance correlation and their many variants.

While dependence structure can drive portfolio results more than many other parameters in investment and risk
models — sometimes even more than their combined effects —the literature provides relatively little to define the finite-
sample distributions of these dependence measures under challenging, real-world data conditions. Yet this is exactly
what is needed to make valid inferences about their estimates, and to use these inferences for a myriad of essential
purposes, such as hypothesis testing, dynamic monitoring, realistic and granular scenario and reverse scenario
analyses, and mitigating the effects of correlation breakdowns during market upheavals (which is when we need valid
inferences the most).

This is the Introduction to a series of four posts that present a straightforward method- Nonparametric Angles-based
Correlation (“NAbC”) —for defining the finite-sample distributions of a very wide range of dependence measures for
portfolio analysis. The next post starts with a fully analytic solution for a narrow but foundational case (with a link
provided to an interactive, downloadable spreadsheet), and sequentially expands NAbC’s application in each post to
eventually cover ANY positive definite dependence measure (including and beyond those listed above). NAbC
remains highly flexible and straightforward in its implementation, yet robustly unaffected and unrestricted by the
distributional challenges of real-world financial returns (see 1. in pdf below).

Motivation for NAbC’s development has been its effective application for real-world financial portfolios (as opposed
to textbook settings), so the solution is characterized by seven critically necessary results that no other method
provides simultaneously:

1. validity under challenging, real-world data conditions, with marginal asset distributions characterized by notably
varying degrees of serial correlation, non-stationarity, heavy-tailedness, and asymmetry

2. application to ANY positive definite dependence measure, including, for example, Pearson’s product moment
correlation, rank-based measures like Kendall’s tau and Spearman’s rho, the kernel-based generalization of Szekely’s
distance correlation, and the tail dependence matrix, among others.



3. itremains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to estimate any of the
above-mentioned dependence measures

4. it provides valid confidence intervals and p-values at both the matrix-level and the pairwise cell-level, with analytic
consistency between these two levels (ie the confidence intervals for all the cells define that of the entire matrix, and
the same is true for the p-values; this effectively facilitates attribution analyses)

5. it provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a (unique) correlation
(dependence measure) matrix, and back again, enabling precision in reverse scenarios and stress testing

6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario or stress
test, enabling granular and realistic scenarios

7. itremains valid not just asymptotically, ie for sample sizes presumed to be infinitely large, but rather, for the
specific sample sizes we have in reality, enabling reliable application in actual, imperfect, non-textbook settings

To date, financial portfolio analysis in practice very often relies on ad hoc, largely qualitative, and ‘judgmental’
approaches to specifying and utilizing dependence structure, and when quantitative approaches are used, their valid
application largely has been restricted to narrow cases. But practitioners, academics, and regulators have a long
history of bringing analytic and probabilistic rigor to bear when estimating and analyzing the other parameters of our
portfolio risk and investment models. Given that dependence structure often drives our portfolio results as much or
more than many of those parameters, how can we settle for anything less than this same level of rigor when it comes
to modeling our dependence structure? Tune in to the next post for an answer to this (semi)rhetorical question.
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This is a fully analytic solution, requiring no sampling (*rejection’ methods or otherwise). The null hypothesis is the Gaussian identity matrix. Green cells require valid user input.
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Forl.&2: Inserta (positive definite) correlation matrix in the green cells of the top matrix {rows 17-20) to obtain the unique corresponding CDF matrix in the orange cells (as well as the 2-sided p-value of the matrix).

Forl.&3.: Conversely, inserta matrix of CDF values in the green cells of the next matrix (rows 27-30) to obtain the unique corresponding correlation matrix in the orange cells (as well as the 2-sided p-value of the matrix).

Forl.&4.: Insertthe desired a (cell E36) to obtain, via Simultaneous Confidence Intervals, the Upper/Lower (1-a)% C.1. Correlation Matrices in the orange cells in rows 36-48 (as well as the 1-sided p-value each of the two matrices).

numeric tolerance _ (user-specified input)

{user specified inpuf] (user-specified input) [To0es07_Jfor coFvaluesnear 0or 1

N sample size = estimated/observed Correlation Matrix Cholesky factorization Spherical Angles corresponding CDF matrix (recommended value=1.00E-307)

"distance" - NP -

1 00000 0.0000 0.0000 0.0000| [10000 o 0 0 0 0.5000 0.5000 0.5000 0.5000 LNP = In{ product of all 2-sided p-values )
1.&2:|00000 1 00000 0.0000 0.0000| |0.0000 10000 o 0 ] 15708 0.5000 0.5000 0.5000 0.5000 | [matrix (2sided) p-value ] = SUM [In[each p-value) ]
0.0000 0.0000 1  0.0000 0.0000| |0.0000 0.0000 1.0000 O 0 15708 15708 0.5000 0.5000 0.5000 0.5000 1.000000 000

Null = Gaussian identity matrix | 0.0000 0.0000 00000 1  0.0000| |0.0000 0.0000 00000 10000 O 15708 15708 1.5708 0.5000 0.5000 0.5000 0.5000

0.0000_0.0000 0.0000 0.0000 1 0.0000 0.0000_0.0000 0.0000 1.0000| | 1.5708 1.5708 1.5708 1.5708 0.50000.5000_0.5000 _0.5000

1 0 0 0 o0 k= 4 3 2 1

0 1 0 0 o

0 0 1 0 0| (userspecfiedinput) — _ _

0 0 0 1 0| CcoFmatrix Spherical Angles Cholesky factorization corresponding (‘quantile’) Correlation Matrix

0 0o o o1 "distance” = LNP =

0.0013 0.00132 0.0013 0.0013 10000 O [ 0 ] 1 0.2668 0.2668 0.2668 0.2668 LNP = In{ product of all 2-sided p-values )
0.0013 0.0013 0.0013 0.0013| | 1.3007 0.2668 0.9638 0 ] 0 0.2668 1 03200 0.3200 0.3200 — SUM [ In[each p-value) ]
1.&3. | 0.0013 0.0013 0.0013 00013 [ 13007 1.2996 0.2668 0.2581 05285 0 0 02668 03200 1  0.3697 0.3607 0.025000

0.0013 0.0013 0.0013 0.0013 | | 1.3007 1.2996 1.2985 0.2668 0.2581 02497 0.8343 0 0.2668 0.3200 03697 1  0.4161

0.0013 0.0013 0.0013 0.0013 13007 1.2996 12985 1.2974 0.2668 0.2581 0.2497 0.2415 0.8611| |0.2668 0.3200 0.3697 0.4161 1
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SIMULTANEOUS CONFIDENCE INTERVALS (lower CDF values are associated with higher Correlation values, and vice versa)

(Upper) CDF matrix (a/2) Spherical Angles Cholesky factorization UPPER (1-/2)% Confidence Interval Correlation Matrix

(user-specified input) "'distance” = LNP =

a 1.&4.: 0.0025 0.0025 0.0025 0.0025 10000 © 0 0 0 1 02483 02482 02483 0.2483 LNP = In{ product of all 1-sided p-values )
Ch1a  REEE 0.0025 0.0025 0.0025 0.0025| |1.3199 0.2483 0.9687 O 0 0 02483 1  0.2956 0.2956 0.2956 = SUM [ In[each p-value) ]
0.0025 0.0025 0.0025 0.0025| 13139 1.3189 0.2483 0.2415 03381 0 0 02483 0.2956 1 03402 0.3402 0.025000

[backinto' individual rather | 0.0025 0.0025 0.0025 0.0025| |1.3199 13189 13178 0.2483 02415 02348 09083 0 02483 0.2056 03402 1 03824

than simultaneous CI's; for 0.0025_0.0025_0.0025_0.0025 13199 13189 13178 13168 0.2483 02415 02348 02282 02791| |0.2483 0.2056 0.3402 03824 1

example, a=0.44734 gives 95%

CI's for all cells individually (Lower) CDF matrix (1-c/2)% Spherical Angles Cholesky factorization LOWER (a/2)% Confidence Interval Correlation Matrix

for N=252) "distance” = LNP =

m L& 0.9975 0.9975 0.9975 0.9975 10000 © 0 0 0 1 02483 02483 0.2483 -0.2483 LNP = In{ product of all 1-sided p-values )
45 | 0.9975 09975 09975 0.9975| | 18217 0.2483 0.9687 O 0 ) 02483 1 01723 0.1723 0.1753 - sUM [ In[each p-value) |
0.9975 0.9975 09975 09975 | | 18217 1.8227 0.2483 0.2415 09381 0 0 0.2483 01723 1 0.1003 0.1003 0.025000

0.9975 0.9975 0.9975 0.9975 | | 1.8217 1.8227 1.8238 -0.2483 0.2415 0.2348 09083 0 0.2483 0.1723 01003 1  0.032

% 0.9575_0.9975_0.9975_0.9975 1.8217 1.8227 18238 1.8248 -0.2483 -0.2415 -0.2348 -0.2282 0.8791| |-0.2483 0.1723 0.1003 0.0322 1



