Beating the Correlation Breakdown, for Pearson's and Beyond: Robust Inference and Flexible Scenarios and Stress Testing for Financial Portfolios

Post 1 of 4: INTRODUCTION

JD Opdyke, Chief Analytics Officer, Partner, Sachs Capital Group Asset Management, LLC JDOpdyke@gmail.com

NOTE: These posts summarize a chapter in my forthcoming monograph for Cambridge University Press.

Introduction

We live in a multivariate world, and effective modeling of financial portfolios, including their construction, allocation, forecasting, and risk analysis, simply is not possible without explicitly modeling the dependence structure of their assets.

Many different measures of dependence structure are widely used, including the foundational Pearson's product moment correlation matrix, rank-based measures like Kendall's Tau and Spearman's Rho, as well as measures designed to capture highly non-linear dependence such as the tail dependence matrix, Chatterjee's correlation, Lancaster's correlation, and Szekely's distance correlation and their many variants.

While dependence structure can drive portfolio results more than many other parameters in investment and risk models – sometimes even more than their combined effects –the literature provides relatively little to define the finite-sample distributions of these dependence measures under challenging, real-world data conditions. Yet this is exactly what is needed to make valid inferences about their estimates, and to use these inferences for a myriad of essential purposes, such as hypothesis testing, dynamic monitoring, realistic and granular scenario and reverse scenario analyses, and mitigating the effects of correlation breakdowns during market upheavals (which is when we need valid inferences the most).

This is the Introduction to a series of four posts that present a straightforward method– Nonparametric Angles-based Correlation ("NAbC") – for defining the finite-sample distributions of a very wide range of dependence measures for portfolio analysis. The next post starts with a fully analytic solution for a narrow but foundational case (with a link provided to an interactive, downloadable spreadsheet), and sequentially expands NAbC's application in each post to eventually cover ANY positive definite dependence measure (including and beyond those listed above). NAbC remains highly flexible and straightforward in its implementation, yet robustly unaffected and unrestricted by the distributional challenges of real-world financial returns (see 1. in pdf below).

Motivation for NAbC's development has been its effective application for real-world financial portfolios (as opposed to textbook settings), so the solution is characterized by seven critically necessary results that no other method provides simultaneously:

1. validity under challenging, real-world data conditions, with marginal asset distributions characterized by notably varying degrees of serial correlation, non-stationarity, heavy-tailedness, and asymmetry

2. application to ANY positive definite dependence measure, including, for example, Pearson's product moment correlation, rank-based measures like Kendall's tau and Spearman's rho, the kernel-based generalization of Szekely's distance correlation, and the tail dependence matrix, among others.

3. it remains "estimator agnostic," that is, valid regardless of the sample-based estimator used to estimate any of the above-mentioned dependence measures

4. it provides valid confidence intervals and p-values at both the matrix-level and the pairwise cell-level, with analytic consistency between these two levels (ie the confidence intervals for all the cells define that of the entire matrix, and the same is true for the p-values; this effectively facilitates attribution analyses)

5. it provides a one-to-one quantile function, translating a matrix of all the cells' cdf values to a (unique) correlation (dependence measure) matrix, and back again, enabling precision in reverse scenarios and stress testing

6. all the above results remain valid even when selected cells in the matrix are 'frozen' for a given scenario or stress test, enabling granular and realistic scenarios

7. it remains valid not just asymptotically, ie for sample sizes presumed to be infinitely large, but rather, for the specific sample sizes we have in reality, enabling reliable application in actual, imperfect, non-textbook settings

To date, financial portfolio analysis in practice very often relies on ad hoc, largely qualitative, and 'judgmental' approaches to specifying and utilizing dependence structure, and when quantitative approaches are used, their valid application largely has been restricted to narrow cases. But practitioners, academics, and regulators have a long history of bringing analytic and probabilistic rigor to bear when estimating and analyzing the other parameters of our portfolio risk and investment models. Given that dependence structure often drives our portfolio results as much or more than many of those parameters, how can we settle for anything less than this same level of rigor when it comes to modeling our dependence structure? Tune in to the next post for an answer to this (semi)rhetorical question.

B C D	6					N	L		0	P	Q		S T					Y Z	AA	AD	AC	AD /	AE AF A	G AH AI A
					elation Ma												ntire mat	rix						
					re obtaina										CDF mat									
				and Beyond: Robust Inference and Flexible Scenarios and Stress Testing for Financial Portfolios" 4. Upper/Lower 95%									3. Inverse CDF ('quantile') Correlation Matrix											
													orrelation Matrices (i.e. Simultaneous Confidence Interval matrices, Cell Confidence Intervals)											
			(on SSR	N, Rese	archGate,	www.Da	ataMineit.	com)							as well a	is Individ	fual Cell C	onfidence	Interval	s)				
			This is a	£					()				The null h			·	1.1	and the Con	and and the					
	Ford	. & 2.:																					d p-value of the matrix).	
		. & 3.:																					sided p-value of the matrix).	
		. & 4.:																					ided p-value each of the two	
	1013		moercu	ie uesii	euu (cen	2307 10 0	iotani, via	Simultane	ous com	luence n	itervais,	the oppe	in cower (1	-47/0 C.I.	correlat	ion wat	ices in th	e orange o		W3 30-40	(as wen	as the 1-st		user-specified input)
or enorified in	(turne)		lucor en	ocified i	nnutl																			or CDF values near 0 or 1
ser-specified input) sample size = 126			(user-specified input) estimated/observed Correlation Matrix					Cholesky factorization Sphere				Onbodes												
sample size =	120		estimate	a/obse	erved Corre	elation IVI	atrix	Cholesk	y factoriz	ation			Spherica	I Angles				correspo	onaing C)F matrix			(recommended value=1.00E	
								_										_						"'distance" = LNP =
			1	0.000	0.0000			1.0000	0	0	0	0							0.5000	0.5000	0.5000	0.5000		LNP = In(product of all 2-sided p-value
		1. & 2.:	0.0000	1		0.0000		0.0000		0	0	0	1.5708					0.5000		0.5000	0.5000	0.5000	matrix (2-sided) p-value =	= SUM [In(each p-value)]
			0.0000	0.000		0.0000		0.0000			0	0		1.5708					0.5000		0.5000	0.5000	1.000000	0.00
ull = Gaussian i	dentit	/ matrix	0.0000	0.000		1	0.0000	0.0000			1.0000	0		1.5708				0.5000		0.5000		0.5000		
_	_	-	0.0000	0.000	0.0000	0.0000	1	0.0000	0.0000	0.0000	0.0000	1.0000	1.5708	1.5708	1.5708	1.5708		0.5000	0.5000	_	0.5000			
1 0 0	0	0															,	(= 4	3	2	1			
0 1 0	0	0																						
0 0 1		0	(user-sp		nput)																			
0 0 0		0	CDF matrix				Spherical Angles				Cholesky factorization				correspo	onding ('o	quantile') Correlation Matrix							
0 0 0	0	1						_																"'distance" = LNP =
				0.001	3 0.0013								1.0000	0	0	0	0	1	0.2668	0.2668				LNP = In(product of all 2-sided p-value
			0.0013			0.0013		1.3007						0.9638	0	0	0	0.2668	1	0.3200	0.3200		matrix (2-sided) p-value =	= SUM [In(each p-value)]
		1. & 3.:	0.0013				0.0013		1.2996					0.2581		0	0	0.2668	0.3200	1		0.3697	0.025000	-59.80
					3 0.0013		0.0013	1.3007							0.2497		0	0.2668	0.3200		1	0.4161		
			0.0013	0.001	3 0.0013	0.0013	_	1.3007		1.2985	1.2974		0.2668	0.2581	0.2497	0.2415	0.8611	0.2668	0.3200	0.3697	0.4161	1		
							k	= 4	3	2	1													
						ICE INTER	RVALS (low			sociated	with highe	er Correla	tion values						(2)4(0)					
			(Upper)	CDF ma	trix (α/2)			Spherica	al Angles				Cholesk	factoriza	ation			UPPER (1	ι-α/2)% C	onfidence	e Interval	Correlatio	on Matrix	
user-specified in			_					-				_												"'distance" = LNP =
α	####			0.002	5 0.0025			1					1.0000	0	0	0	0	1	0.2483	0.2483				LNP = In(product of all 1-sided p-value
CI: 1-α	####	•	0.0025			0.0025		1.3199						0.9687	0	0	0	0.2483	1		0.2956		matrix (1-sided) p-value =	= SUM [In(each p-value)]
				0.002			0.0025		1.3189					0.2415		0	0	0.2483	0.2956	1		0.3402	0.025000	-59.80
back into' indivi					5 0.0025		0.0025		1.3189						0.2348		0		0.2956		1	0.3824		
han simultaneo			0.0025	0.002	5 0.0025	0.0025		1.3199	1.3189	1.3178	1.3168		0.2483	0.2415	0.2348	0.2282	0.8791	0.2483	0.2956	0.3402	0.3824	1		
xample, α=0.44																			false -					
I's for all cells in	aividu	ally	(Lower)	UFma	trix (1-α/2)	%		Spherica	al Angles				Cholesk	factoriza	ation			LOWER	α/2)% Co	ntidence	interval (Correlation	n Matrix	
or N=252)			_	_				-					-					_		_				"'distance" = LNP =
		1. & 4.:		0.997	5 0.9975			1					1.0000	0	0	0	0	1		-0.2483				LNP = In(product of all 1-sided p-value
			0.9975			0.9975		1.8217						0.9687	0	0	0	-0.2483	1	-0.1723			matrix (1-sided) p-value =	= SUM [In(each p-value)]
				0.997			0.9975	1.8217						-0.2415		0	0	-0.2483			-0.1003		0.025000	-59.80
			0.9975	0.997	5 0.9975		0.9975	1.8217	1.8227				-0.2483	-0.2415	-0.2348 -0.2348	0.9083	0	-0.2483		-0.1003	1	-0.0322		
						0.9975			1.8227											-0.1003		1		