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Robust Inference and Flexible Scenarios and Stress Testing for Financial Portfolios 
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Post 2 of 4: Pearson’s Under The Gaussian Identity Matrix 

NOTE: These posts summarize a chapter in my forthcoming monograph for Cambridge University Press. 

 

INTRODUCTION 

Dependence structure can drive portfolio results more than many other parameters in investment and 
risk models – sometimes even more than their combined effects – but the literature provides relatively 
little to define the finite-sample distributions of these dependence measures under challenging, real-
world financial data conditions.  Yet this is exactly what is needed to make valid inferences about their 
estimates, and to use these inferences for a myriad of essential purposes, such as hypothesis testing, 
dynamic monitoring, realistic and granular scenario and reverse scenario analyses, and mitigating the 
effects of correlation breakdowns during market upheavals (which is when we need valid inferences the 
most). 

This is the second in a series of four posts which introduces a new and straightforward method – 
Nonparametric Angles-based Correlation (“NAbC”) – for defining the finite-sample distributions of a very 
wide range of dependence measures for financial portfolio analysis.  These include ANY that are positive 
definite, such as the foundational Pearson’s product moment correlation matrix (Pearson, 1895), rank-
based measures like Kendall’s Tau (Kendall, 1938) and Spearman’s Rho (Spearman, 1904), as well as 
measures designed to capture highly non-linear dependence such as the tail dependence matrix (see 
Embrechts, Hofert, and Wang, 2016, and Shyamalkumar and Tao, 2020), Chatterjee’s correlation 
(Chatterjee, 2021), Lancaster’s correlation (Holzmann and Klar, 2024), and Szekely’s distance correlation 
(Szekely, Rizzo, and Bakirov, 2007) and their many variants (such as Sejdinovic et al., 2013, and Gao and 
Li, 2024).1  

This post focuses on NAbC’s application to a narrow but foundational case, which is used as a baseline 
to greatly expand its range of application in Posts 3 and 4.  The core method itself, however, remains little 
changed under very general conditions. 

 
1 Note that “positive definite” throughout these four posts refers to the dependence measure calculated on the matrix of all 
pairwise associations in the portfolio, that is, on a bivariate basis.  Some of these dependence measures (eg Szekely’s 
correlation) can be applied on a multivariate basis, in arbitrary dimensions, for example, to test the hypothesis of multivariate 
independence.  But “positive definite” herein is not applied in this sense, and I explain below some of the reasons for using the 
dependence framework of pairwise associations.  
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POST 2: NAbC applied to Pearson’s under the Gaussian identity matrix. 
POST 3: NAbC applied to Pearson’s under ALL correlation matrix values and ALL relevant, challenging, 
real-world financial returns data conditions.2 
POST 4: NAbC applied to ALL matrix values and ALL positive definite measures of portfolio dependence 
measures, under ALL relevant, challenging, real-world financial data conditions. 

 

PEARSON’S CORRELATION, GAUSSIAN DATA, and the IDENTITY MATRIX 

We begin with Pearson’s product moment correlation matrix, the oldest and arguably most broadly used 
measure of dependence.  Although its limitations often are mischaracterized or misunderstood, 
especially as they relate to widely held views classifying it strictly as a measure of linear association (see 
van den Heuvel & Zhan, 2022), in many settings it remains either optimal or centrally relevant for wide-
ranging purposes (e.g. robust asset allocation (Welsch and Zhou, 2007), Black-Litterman variants 
(Meucci, 2010a, Qian and Gorman, 2001), entropy pooling with fully flexible views (Meucci, 2010b), 
portfolio optimizations combined with random matrix theory (Pafka and Kondor, 2004), stress testing 
(Bank for International Settlements, Basel Committee on Banking Supervision, 2011), and even non-
linear, tail-risk-aware trading algorithms (Li et al., 2022, and Thakkar et al., 2021) to name a few).  
Consequently, Pearson’s is the foundational dependence measure we start with, and the data and 
correlation structure we presume is Gaussian data under no correlation: that is, Pearson correlation 
values of zero off the diagonal of the matrix as in (1).3 

(1) identity matrix =  for p = 4 assets 

If we take two variables, such as the returns of two assets, X and Y, over a time period with n 
observations, we calculate Pearson’s correlation coefficient for this sample as (2):4 
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2 I take ‘real-world’ financial returns data to be multivariate with marginal distributions that vary notably in their degrees of 
heavy-tailedness, serial correlation, asymmetry, and (non-)stationarity. 
 
3 Note, of course, that a zero value for Pearson’s correlation does not imply independence, but independence does imply a 
zero value for Pearson’s correlation. 
 
4 Recall that Pearson’s requires that the first two moments (the mean and the variance) of the distributions of X and Y are finite. 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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For the corresponding matrix of all pairwise correlations, we have: 

1,2 1,3 1,4

2,1 2,3 2,4

3,1 3,2 3,4

4,1 4,2 4,3

1

1

1

1

r r r

r r r
R

r r r

r r r

 
 
 =
 
 
   , with the usual, following characteristics: 

i.   Symmetry: , ,i j j ir r=
 

ii.  Unit diagonal entries: 
1i jr = =

 

iii. Bounded non-diagonal entries: ,1 1i jr−  
 

iv. The matrix is positive definite, i.e. all eigenvalues 
0i 

 

For completeness and for reference throughout this post, we define eigenvalues here:  

If there exists a nonzero vector v such that Rv v= then  λ  is an eigenvalue of R and v is its 
corresponding eigenvector.  λ and v can be obtained by solving 

( ) ( )det 0,  then det 0, where  is the identity matrix and det is the determinantI R I R v I − = − =
 

The eigenvalue can be thought of as the magnitude of the (portfolio) variance in the direction of the 
eigenvector.  Also note that with iii. above, this range can be tighter under specific circumstances, such 

as for equicorrelation matrices where ( )1 p 1 1,  p dim( ).r r− −   =  

 

ANGLE VALUES vs CORRELATION VALUES 

The key to the NAbC approach rests in its use of the ANGLE 𝛉  between the two mean-centered data 
vectors of X and Y, as opposed to directly and only using of the values of the correlations themselves.  For 
a single pair of variables, providing a single bivariate correlation value, the relationship between angle 
value and correlation value is most readily seen in the widely known cosine similarity, where the cosine of 
the angle equals the inner product divided by the product of the two vectors’ (Euclidean) norms as in (4):5 

(4) 
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5 While r typically is used to represent Pearson’s calculated on a sample, ρ often is used to represent Pearson’s calculated on a 
population. 
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If a portfolio has p assets, the number of its pairwise relationships is npr=p(p-1)/2.  For all these npr 
relationships, the matrix analogue to (4), as long as the matrix is symmetric-positive-definite,6 is well 
established in the literature (Pinheiro and Bates, 1996, Rebonato and Jackel, 2000, Rapisarda et al., 2007, 
Pouramadi and Wang, 2015, and Cordoba et al., 2018) and shown below, formulaically in (5)-(7) and in 
code in Table A.  The steps for translating between correlations and angles, in both directions, are shown 
in A.-C. below. 

A. estimate the correlation matrix from sample data 
B. obtain the Cholesky factorization of the correlation matrix 
C. use inverse trigonometric and trigonometric functions on B. to obtain corresponding spherical angles 

and in reverse: 

C. start with a matrix of spherical angles 
B. apply trigonometric functions to obtain the Cholesky factorization  
A. multiply B. by its transpose to obtain the corresponding correlation matrix 
 

(see Rebonato & Jaeckel, 2000, Rapisarda et al., 2007, and Pourahmadi and Wang, 2015, but note a typo 
in the formula in Pourahmadi and Wang, 2015, for the first 3 steps) 
 

Central to this correlation-angle translation mechanism is obtaining the Cholesky factor of the 
correlation/dependence matrix, which is usually a hard-coded function in most statistical and 
mathematical software.  The relevant formulae are included below for completeness.   

(5) A correlation matrix R will be real, symmetric positive-definite, so the unique matrix B that satisfies   

TR BB=  where B is a lower triangular matrix (with real and positive diagonal entries), and 
TB is its 

transpose, is the Cholesky factorization of R.  Formulaically, B’s entries are as follows: 

( )
1
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, , ,
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j j j j j k
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B R B
−

=

=  −
,     

1

, , , ,

1,

1
 for 

j

i j i j i k j k

kj j

B R B B i j
B

−

=

 
= −  

 


 

The Cholesky factor can be viewed as a matrix analog to the square root of a scalar, because like a square 
root the product of it and its transpose yields the original matrix.  Importantly, the Cholesky factor places 
us on the UNIT hyper-(hemi)sphere (where scale does not matter) because the sum of the squares of its 
rows always equals one.  Next, we recursively apply inverse trigonometric and trigonometric functions to 
each cell of the Cholesky factor to obtain each cell’s angle value; or in reverse, we obtain a 
correlation/dependence value from each cell’s angle value (see Pourahmadi and Wang, 2015, as well as 

 
6 Note that this is true not only for Pearson’s, but also for all relevant dependence measures in this setting, as will be discussed 
in Posts 3 and 4. 
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Rapisarda et al., 2007, for a meticulous derivation of these formulas).  Note that this relationship is one-
to-one, with a unique correlation/dependence matrix yielding a unique angles matrix, and vice versa.   

(6)  

For R, a p x p correlation matrix, 
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( ),for  angles 0, .i ji j   
 

To obtain an individual angle ,i j , we have: 

( ) ( )
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,1 ,1 , , ,
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j
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(7) To obtain an individual correlation, ,i jr , we have, simply from 
TR BB= : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, ,1 ,1 , , , , , , ,

2 1 1

cos cos cos cos sin sin cos sin sin   for 1
i k i
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SAS/IML code translating correlations to angles and angles to correlations is shown in Table A below: 
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TABLE A:  

 

The above all is well-established and straightforward, and demonstrates, as we know intuitively, that 
scale does not (and should not) matter when it comes to dependence measures;7 again, in this setting, 
this is because geometrically, the Cholesky factor places us on the UNIT hyper-(hemi)sphere.  
Importantly, the Cholesky factor also ensures that sampling based directly on the resulting angles will 
yield only positive definite matrices, as the Cholesky factor remains undefined otherwise.  This automatic 
enforcement of positive definiteness makes this approach much more efficient than others that require 
post-sample verification of positive definiteness, and subsequent resampling when this requirement is 
violated8 (see Makalic and Schmidt, 2018, Cordoba et al. 2018, and Papenbrock et al., 2021).  This 
inefficiency grows very rapidly with the size of the matrix/portfolio, as shown in the ratio below in (8) (see 
Bohn and Hornik, 2024 and Pourahmadi and Wang, 2015).   

 
7 Scale invariance is widely proved and cited for Pearson’s, Kendall’s, and Spearman’s (see Xu et al., 2013, and Schreyer et al., 
2017 examples). 
 
8 As shown below, this approach also much more straightforward, not to mention more generalizable, than the other, more 
complex sampling algorithms that have been proposed, such as the vine and extended onion algorithms of Lewandowski et al. 
(2009), the Metropolis-Hastings and Metropolis algorithms of Cordoba et al. (2018), and the restricted Wishart distribution 
approach of Wang et al. (2018). 
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(8) 

( ) ( )
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        = =  = =      

      
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Even for relatively small matrices of dimension p=25, the odds of successfully randomly generating a 
single valid positive definite correlation matrix, by uniformly sampling the off-diagonal correlation values 
themselves across values ranging from –1.0 to 1.0, are less then 2 in 10 quadrillion, leading to 
prohibitively inefficient sampling.  Consequently, even when sampling-rejection algorithms achieve some 
efficiency gains, realistically the sampling approach in this setting should possess automatic 
enforcement of positive definiteness.  Conceptually, an imperfect but apt analogy is to a rubiks cube: the 
colored stickers on the cube cannot simply be peeled off and repasted, even some of the time, to solve 
the cube.  The valid solution must be obtained by (always) following the rules governing shifts in the cube, 
each of which affects many of the individual cubes (cells), not just the one we need to reposition.  
Similarly with sampling the correlation/dependence matrix: converting to the Cholesky factor (en)forces 
positive definiteness by forcing the matrix onto the UNIT hyper-(hemi)sphere, where we can subsequently 
use the distributions of the angles to perturb it and obtain, after re-translation, the distribution of the 
original correlation/dependence matrix, without violating positive definiteness, simply by following steps 
A., B., and C., and C., B., and A., above. 

Another crucial characteristic of these angles is that the distribution of each is independent with respect 
to those of the others (see Pourahmadi and Wang, 2015, Tsay and Pourahmadi, 2017, and Ghosh et al., 
2020).  This is critically important for practical usage as it enables the straightforward construction of the 
multivariate distribution of a matrix of angles, which is the more important objective here (vs merely 
sampling) and essential for the application of NAbC below. 

Finally and most critically, the above demonstrates that the angles between pairwise data vectors 
contain ALL the information that exists regarding the dependence between the two variables (see 
Fernandez-Duren & Gregorio-Dominguez, 2023, and Zhang & Songshan, 2023, as well as Opdyke, 2024).  
This will be covered more extensively in subsequent posts. 

So with all this in mind we proceed with the use of the angles as described and defined above.  The goal is 
to use the angles as the basis for 1. sample generation of the correlation matrix (dependence measure 
matrix); and more importantly, 2. definition of the multivariate distribution of the correlation matrix 
(dependence measure matrix). 

 

FULLY ANALYTIC ANGLES DENSITY – EFFICIENT SAMPLE GENERATION 

Once we have the matrix of angles, one for each pairwise correlation (dependence measure), we use the 
well-established finding that, to sample uniformly from the space of positive definite matrices, the 
probability density function (pdf) must be proportional to the determinant of the Jacobian of the Cholesky 
factor (9) (see Cordoba, 2018, Pourahmadi and Wang, 2015, Lewandowski et al., 2009).   
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(9) 
( )
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det 2   where  is the Cholesky factorization of correlation matrix 
p

p i t

ii

i

J U u U R UU
−

=

  = =  
 

We see directly from (6) that ( )sink x , suitably normalized in (10), satisfies this requirement (see 

Pourahmadi and Wang, 2015, and Makalic and Schmidt, 2018). 

(10) 
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k
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k




 +
=   = − =
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Although not mentioned in Makalic and Schmidt (2018), importantly note that k = #columns – column# 
(so for the first column of a p=10x10 matrix, k=9; for the second column, k=8, etc.). 

However, we need both the cumulative distribution function (cdf) and its inverse, the quantile function, to 
make use of this for sampling and other purposes.  The most widely used and straightforward method of 
sampling is inverse transform, whereby the values of a uniform random variate are passed to the quantile 
function to generate values.  Yet regarding the cdf corresponding to (10) above, Makalic and Schmidt 
(2018) state, “Generating random numbers from this distribution is not straightforward as the 
corresponding cumulative density [sic] function, although available in closed form, is defined recursively 
and requires O(k) operations to evaluate. The nature of the cumulative density [sic] function makes any 
procedure based on inverse transform sampling computationally inefficient, especially for large k.” 

Fortunately, that turns out not to be the case, as Opdyke (2020) derived an analytic, non-recursive 
expression of the cdf below in (11). 
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 
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!
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n n

n n
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

= 
 

      ( ) ( ) ( ) ( ) ( )
0

where 1 2 1 ,  1,  1,  and 1,  0, 1, 2,...
n

h h h h h n n h r c= + + + −  =   − −
 

Interestingly, the Gaussian hypergeometric function makes many appearances in this setting,9 but it is 
admittedly cumbersome mathematically.  But Opdyke (2022, 2023, and 2024) has shown that (11) can be 
simplified further, based on some arguably obscure hypergeometric identities: 

 
9 The (Gaussian) hypergeometric function appears in derivations of the distribution of individual correlations (see Muirhead, 
1982, and Taraldsen, 2021), moments of the spectral distribution under some conditions (see Adams et al. 2018, and 
https://reference.wolfram.com/language/ref/MarchenkoPasturDistribution.html), and in the definition of positive definite 
functions (see Franca & Menegatto, 2022). 
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(12) 

  ( ) ( )2 1For 1 and 0 1 simultaneously, which holds in this setting, we have , ; ; ; ,1 ac a r F a b c r B r a b a r= +   = −  

( ) ( )
11

0

where ; , 1  = the incomplete beta function

r
baB r a b u u du
−−= −

(see DLMF, 2024) 

In addition we have 
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( )
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= = =
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( ) ( ); , ( ; , ) ,BetaB r a b F r a b B a b=        (see Weisstein, E., 2024a and 2024b) 

Combining terms we have 
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Recognizing that the complete Beta function is the inverse of the normalization factor of c(k) for these 
values, their product equals 1 and cancels, as do the two cosine terms, and we obtain the following 
signed beta cdf: 

( ) ( )21 1 1 1
; ~ cos ; ,  for ,

2 2 2 2 2
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k
F x k F x x
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−          
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k
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And now, with this straightforward, fully analytic, non-recursive cdf, we can obtain a straightforward, fully 
analytic quantile function of the angle distribution: 

( )Let  Pr .  Then for ,
2

p x X x

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( )2 1 1
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k
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We must reflect the symmetric angle density for p≥0.5, so we have 
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k
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Importantly, although often ignored in the sampling literature (see Makalic and Schmidt, 2018), note that 

properly adjusting for sample size, n, and degrees of freedom gives # 2k k n cols + − −  

So now from (12) above we have for the angles distribution, under the Gaussian identity matrix, for the 
first time together, the pdf, cdf, and quantile function: 

( ) ( ) ( )
( )

( )

2 1
sin ,  0, ,  1,2,3 #columns 1, and 

2 1 2

k

X k k

k
f x c x x k c

k




 +
=   = − =

 +
 

( ) ( )21 1 1 1
; ~ cos ; ,  for ,

2 2 2 2 2
X Beta

k
F x k F x x

+   
−          

        
( )21 1 1 1

~ cos ; ,  for 
2 2 2 2 2

Beta

k
F x x

+   
+          

( )1 1 1 1
; arcos 1 2 ; ,  for 0.5;

2 2
Beta

k
F p k F p p− −

 + 
= −        

         

 1 1 1
= arcos 1 2 1 ; ,  for 0.5

2 2
Beta

k
F p p −

 + 
− − −        
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Apparently the first (and only other) presentation of this quantile function result comes from an 
anonymous blog post in March, 2018, although it was obtained via a different derivation, which serves to 
further validate the result.10 

The above (12) now provides a fully analytic solution,11 and in fact is so straightforward as to be readily 
implemented in a spreadsheet, and one is provided for download via the link below and included as a file 
upload in this Post 2. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-
Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-
24.xlsx 

So contrary to the assertions of Makalic and Schmidt (2018), the straightforward approach of inverse 
transform sampling CAN be used in this setting, for this narrow case, to efficiently sample the correlation 
matrix.  And in fact, this is the most efficient way to sample it.  Roman (2023) has compared Makalic and 
Schmidt (2018) to the above method (defined in Opdyke, 2022, 2023, and 2024) and obtained over 30% 
decrease in runtime. 

But sampling arguably is the less important of our two goals, because with a fully analytic finite-sample 
distribution, we can define, exactly for a given sample size, the p-value of a given cell, and the confidence 
interval of a given cell.  The one-sided p-value simply is the CDF value for the lower tail, or [1 – (CDF 
value)] for the upper tail (13), and due to this pdf’s symmetry, the two-sided p-value is simply two times 
either one-sided value.  Correspondingly, the confidence interval for the critical value alpha is based on 
the quantile function as in (14) 

(13) one-sided p-value = ( );XF x k  or ( )1 ;XF x k− ; two-sided p-value = 2 x one-sided p-value 

(14) ( )1 2;F k−  and ( )1 1 2;F k− −  where, for a 95% confidence interval for example, α = 0.05 

Notably, because the angles distributions are independent, the density of the entire matrix is simply the 
product of the densities of all the cells.  This means we can readily define the p-value and confidence 
intervals of the entire matrix such that they are analytically consistent with those of the cells, because 
they are determined based directly on the cell level p-values and confidence intervals, respectively, as 
shown below. 

 
10 See Xi’an, March, 2018 (https://stats.stackexchange.com/questions/331253/draw-n-dimensional-uniform-sample-from-a-
unit-n-1-sphere-defined-by-n-1-dime/331850#331850 and https://xianblog.wordpress.com/2018/03/08/uniform-on-the-
sphere-or-not/).   
In the interest of proper attribution, a reference on the website to the book “The Bayesian Choice” hints that the Xi’an 
pseudonym is Christian Robert, a professor of Statistics at Université Paris Dauphine (PSL), Paris, France, since 2000 
(https://stats.stackexchange.com/users/7224/xian). 
 
11 Note that we use the term ‘analytic’ as opposed to ‘closed-form’ because we are unaware of a closed-form algorithm for the 
inverse cdf of the beta distribution (see Sharma and Chakrabarty, 2017, and Askitis, 2017).  However, for all practical purposes 
this is essentially a semantic distinction since this quantile function is hard-coded into all major statistical / econometric / 
mathematical programming languages. 

http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
http://www.datamineit.com/JD%20Opdyke--The%20Correlation%20Matrix-Analytically%20Derived%20Inference%20Under%20the%20Gaussian%20Identity%20Matrix--02-18-24.xlsx
https://stats.stackexchange.com/users/7224/xian
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FINITE-SAMPLE DISTRIBUTION OF THE CORRELATION MATRIX 

As mentioned previously, a key characteristic of the angles distributions is that they are independent vis-
à-vis each other, which makes defining their multivariate distribution straightforward: it is simply the 
product of all the angles’ pdf’s.  But what does this mean for the p-value and confidence intervals for the 
entire matrix?  Given the null hypothesis of the identity matrix (under the presumption of Gaussian data 
here), the (2-sided) p-value of the entire matrix is simply one minus the probability of no false positives, 
which is the definition of controlling the family-wise error rate (FWER) of the matrix (15). 

(15)  ( )
( )1 2

1

matrix (2-sided)  1 1 -
p p

i

i

pvalue p value
−

=

 
= − − 
 

    where - ip value  is the 2-sided p-value. 

Again, because the cell-level distributions are independent, their p-values are independent, and 
otherwise statistically more powerful approaches for calculating the FWER that rely on, for example, 
resampling methods (Westfall and Young, 1993, and Romano and Wolf, 2016), do not apply here.  In other 
words, they provide no power gain over (15) because under independence, there is no dependence 
structure for them to exploit.  So the straightforward calculation above in (15) is, by definition, the most 
powerful for FWER control. 

Similarly, calculation of the confidence interval for the entire matrix (16) is essentially the same as that of 
the p-value, but of course it is divided in half to account for each tail, and the root of the critical values is 
taken, rather than the product.  Otherwise, the calculations are identical to obtain the critical alphas for 
these ‘simultaneous confidence intervals.’ 

(16) 
 

( )( )( )1 1 2
1 1 2

p p

crit simult LOW 
−  

− − = − −
  and  

1crit simult HIGH crit simult LOW − − − −= −
 

 

These critical alphas, when inserted as values in the cdf functions, provide the two correlation matrices 
that define and capture, say, (1-alpha)=(1-0.05)=95% of randomly sampled matrices under the null 
hypothesis, which in this case is the identity matrix.  Independence of the angles distributions again 
makes these simultaneous confidence intervals very straightforward to calculate.   

Importantly, again note that because we derived the quantile (inverse cdf) function in (12) above, we can 
go in either direction regarding these results: we can specify a correlation matrix and, under the null 
hypothesis of the identity matrix, obtain its p-values, both for the individual cells and the entire matrix, 
simultaneously.  We also can specify a matrix of cdf values and obtain its corresponding correlation 
matrix.  Finally, we can use simultaneous confidence intervals to obtain the two correlation matrices that 
form the matrix level confidence interval.   

Note that all these calculations are included in the downloadable spreadsheet, with visible formulae 
corresponding to each step of these calculations for full transparency. 
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P-VALUES vs ENTROPY: USING P-VALUES AS A MEASURE OF MATRIX DISTANCE/DISPERSION 

Before describing how NAbC, unlike competing methods, enables granular, highly flexible scenarios for 
dependence measures (key result #6 of POST 1), lets take a moment to examine the meaning and 
implications of the cell-level p-values derived above in (12) and (13). 

The (2-sided) p-value of (13) provides what can be viewed as a distance metric that has some advantages 
over more traditional distance metrics, such as norms.  Some commonly used norms in this setting for 
measuring correlation ‘distances’ are listed below in (17). 

(17)    

1

1

m
d

m

i

i

x x
=

 
=  
 


 where x is a distance from a presumed or baseline correlation value, 
              d=number of observations, and m=1, 2, and ∞ correspond to the 
              Taxi, Frobenius/Euclidean, and Chebyshev norms, respectively. 

All of these norms measure absolute distance from a presumed or baseline correlation value.  But the 
range of all relevant and widely used dependence measures is bounded, either from –1 to 1 or 0 to 1, and 
the relative impact and meaning of a given distance at the boundaries are not the same as those in the 
middle of the range.  In other words, a shift of 0.01 from an original or presumed correlation value of, say, 
0.97, means something very different than the same shift from 0.07.  NAbC attributes probabilistic 
MEANING to these two different cases, while a norm would treat them identically, even though they very 
likely indicate what are very different events of very different relative magnitudes with potentially very 
different consequences. 

Therefore, a natural, PROBABILISTIC distance measure based directly on these cell-level p-values from 
(13) is the natural log of the product of the p-values, dubbed ‘LNP’ in (18) below: 

(18)   ( )
1 1

"LNP" ln - = ln -  where 1 2
q q

i i

i i

p value p value q p p
= =

 
= = − 

 
   and - ip value is 2-sided. 

Intriguingly, LNP shows a remarkable correspondence with the entropy of the correlation matrix, defined 
by Felippe et al. (2021 and 2023) as (19) below: 

(19) 
( ) ( )

1

Entropy ln
p

j j

j

Ent R p  
=

= = −
 

where R is the sample correlation matrix and j  are the p eigenvalues of the correlation matrix after it is 
scaled by its dimension, R/p.  (Note that this result (19), like NAbC, is valid for ANY positive definite 
measure of dependence, not just Pearson’s, as will be discussed in POSTs 3 and 4). 

Graph 1 compares LNP to the entropy of the correlation matrix in 10,000 simulations under the Gaussian 
identity matrix.  The resulting Pearson’s correlation between them is just shy of 0.99. 
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GRAPH 1: Identity Matrix Simulations -- LNP v Entropy

 

What makes this result worthy of further investigation is that it indicates a broad and useful 
generalizability of LNP.  As will be discussed in Posts 3 and 4, LNP can be calculated for ANY 
correlation/dependence matrix, not just the identity matrix.  Entropy, on the other hand, can be 
calculated only with reference to the identity matrix as a baseline.  Yet the correspondence of LNP to 
entropy under this specific case speaks to LNP’s natural interpretation as a meaningful measure of 
deviation/distance/dispersion, and one that also is more flexible and granular than entropy as it is 
measured cell-by-cell, p(p-1)/2 times, as opposed to only p times for p eigenvalues.  This topic will be 
treated in subsequent posts, but is mentioned here as it provides further validation of this approach 
under this narrow case, as well as much more general conditions. 

 

GRANULAR, HIGHLY FLEXIBLE SCENARIOS 

I have taken a very granular, ‘bottom up’ approach to defining the finite-sample distribution of the 
correlation matrix here, based on the distributions of the individual correlation cells.  In addition to 
analytical consistency, this provides a flexibility that other approaches, such as those based on the 
spectrum of the dependence measure’s matrix, cannot provide, because with only p eigenvalues, they 
simply are at the wrong level of aggregation to flexibly vary (or freeze) the p(p-1)/2 cells for different 
scenarios.12  Correlation (dependence) matrices under a tech market bubble (2000) vs those under a 

 
12 Importantly, when we deviate from the identity matrix (covered in Posts 3 and 4), spectral distributions are far less robust 
than angles distributions.  The latter are bounded, typically unimodal, smooth, not excessively asymmetric, and stable as 
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housing bubble (2008) vs those under Covid (2020) will change very different individual cells, and very 
different combinations of cells, in very different ways, often in terms of both direction and magnitude, 
while leaving many cells strongly affected under one upheaval completely unaffected under another.  In 
other words, while correlation ‘breakdowns’ will occur under all of these extreme conditions, the granular 
nature of pairwise association matrices ensures that the fundamentally different nature of these 
breakdowns will be captured and reflected empirically in all related analyses. The only way to flexibly and 
realistically model this is at the most granular level – that of the individual correlation cells. 

Fortunately, when using NAbC, several results allow for this.  First, 1. independence of the angles 
distributions allows us to vary individual cells.  Second, 2. the distributions of individual correlation cells, 
as well as the distribution of the entire correlation matrix, both remain invariant to the ordering of the 
rows and columns of the matrix (see Pourahmadi and Wang, 2015, and Lewandowski et al., 2009).  Third, 
based on 1. and 2., we can exploit the simple mechanics of matrix multiplication so that only selected 
cells of the matrix are affected, and the rest frozen, as required for a given scenario. 

Focus only on the lower triangle of the correlation matrices below in Graphs 2-4, since the upper triangle 
is just its reflection.  Note again that using NAbC, we only perturb angles.  We never perturb the 
correlation values directly.  We must always convert to angles, perturb the angle values (in this narrow 
case for this Post 2, using inverse transform), and then translate back to correlation values.  In doing so, 

when multiplying the Cholesky factor by its transpose, 
TR BB= , changing a given angle cell in B will 

affect other cells, but only those cells to the right of it in the same row, and those below the diagonal of 
the corresponding column, as shown graphically for several examples in Graph 2 below.13 

 

GRAPH 2: Mechanics of Matrix Multiplication 

 

This means that we can simply reorder the matrix so that the targeted cells we want to vary all end up in 
the rightmost triangle of the lower triangle, according to the fill order in Graph 3 below. 

 

 

 

 
matrices approach singularity; in contrast, the former remain unbounded, often are multi-modal, and are far less stable as 
dependence matrices approach singularity, which is more the rule than the exception when portfolio sizes are not small.  
 
13 Note that not all of these (orange) cells will necessarily change if values of zero are involved, but none OTHER than these 
(orange) cells CAN change when only the red cell changes. 

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
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GRAPH 3: Rightmost Triangle Fill Order 

 

If we only change in matrix B the angle values of cells 1, 2, and 3 above, no other cells in the correlation 

matrix R will be affected, simply by virtue of the mechanics of matrix multiplication from 
TR BB= .  

Below I show another example.  Reorder the correlation matrix so that rows 1-6 are now 6-1 and columns 
1-6 are now 6-1, so that the original cells 1,2 and 1,3 and 2,3 and 4,3 are now in the rightmost triangle of 
the lower triangular matrix, in the fill order shown above. 

GRAPH 4: Example of Mechanics of Matrix Multiplication Applied to Rightmost Triangle Fill Order 

 

 

Changes to the corresponding cells in the angles matrix B (the orange cells) will only change these same 

cells , after 
TR BB= , in the resulting correlation matrix, leaving the rest unaffected.  Note that the green 

cells to be targeted for change do not even have to be contiguous, nor do they have to completely ‘fill’ the 
rightmost (orange) triangle (note that cells 5 and 6 are not targeted): they only must fill the rightmost 
triangle according to the order of the middle matrix above.  Note also that the “rightmost triangle” rule is 
nested/hierarchical: if I wanted to perform ‘what if’ analyses on only one of those cells (e.g. cell “1,2”) 
without changing the other three, I order the original correlation matrix to place that cell as the ‘first’ in 
the lower triangle of the B matrix, as shown.  Then, subsequent changes to it will not affect the other 
(orange) cells.  In contrast, changes to cell “4,3” will affect the values of the other orange cells.  Readers 
are encouraged to test this in the attached spreadsheet. 

So we can exploit these four simultaneous conditions – 1. independence of the angles distributions; 2. 
(correlation) distribution invariance to row and column order; 3. the mechanics of matrix multiplication; 
and 4. the granular, cell-level geometry of NAbC – to obtain great flexibility in defining scenarios wherein 
some cells vary and some do not.  No other approach allows this degree of flexibility, which is what is 

Rightmost Triangle Fill Order 

Determine Targeted Change Cells 
Reorder Rows/Cols to Fill Rightmost Triangle 

with Targets According to Fill Order 

Changes in Corresponding 

Angles Cells ONLY change 

Same in Resorted Matrix 



JD Opdyke, Chief Analytics Officer Page 17 of 21 Beating the Correlation Breakdown: Post 2 of 4 
 

required for defining correlation/dependence matrices for use in realistic, plausible, and sometimes 
extreme stress market scenarios.  This also greatly simplifies attribution analyses, isolating and making 
transparent the identification of effects due to specific pairwise associations, which is something 
spectral analyses cannot do in this setting. 

The only arguable drawback of this approach is that it can be limited by the structure of measuring 
dependence in pairwise associations.  As shown in Graph 4 above, for the p=5 asset matrix, there are 
only p! (ie 5!=120) ways to sort the rows and columns, but there are [p(p1-)/2]! (ie 15!= 
1,307,674,368,000) ways to sort the 15 cells.  The matrix obviously cannot accommodate freely sorting 
the individual cells in this way because it breaks the pairwise structure of the matrix.  Some scenarios, 
therefore, could conceivably be required to include for perturbation some few additional cells in the 
rightmost triangle that are not relevant to the scenario and otherwise should be held constant.  
Fortunately, in practice, especially with large matrices, this appears to be a relatively rare occurrence, 
and when it happens, the effects are identifiable so that materiality can be assessed.  But dealing with 
these potential cases appears to be well worth the price of the unmatched flexibility that this approach 
provides, not to mention the other advantages it maintains over more complex, strictly multivariate 
dependence structures.  For usage with actual market data, the latter typically are much more difficult to 
estimate with the same levels of accuracy, let alone to manipulate for purposes of intervention or 
mitigation.  In contrast, pairwise associations are directly identifiable, typically more easily and 
accurately estimated, and interventions more targeted and transparent. 

 

CONCLUSION 

In Post 1 I listed the seven characteristics of the full NAbC solution, and for completeness I list them here 
below: 

1. validity under challenging, real-world financial data conditions, with marginal asset distributions 
characterized by notably different degrees of serial correlation, non-stationarity, heavy-tailedness, and 
asymmetry 

2. application to ANY positive definite dependence measure, including, for example, Pearson’s product 
moment correlation, rank-based measures like Kendall’s tau and Spearman’s rho, the kernel-based 
generalization of Szekely’s distance correlation, and the tail dependence matrix, among others.   

3. it remains “estimator agnostic,” that is, valid regardless of the sample-based estimator used to 
estimate any of the above-mentioned dependence measures 

4. it provides valid confidence intervals and p-values at both the matrix-level and the pairwise cell-level, 
with analytic consistency between these two levels (ie the confidence intervals for all the cells define 
that of the entire matrix, and the same is true for the p-values; this effectively facilitates attribution 
analyses) 
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5. it provides a one-to-one quantile function, translating a matrix of all the cells’ cdf values to a (unique) 
correlation (dependence measure) matrix, and back again, enabling precision in reverse scenarios and 
stress testing 

6. all the above results remain valid even when selected cells in the matrix are ‘frozen’ for a given scenario 
or stress test, enabling granular and realistic scenarios 

7. it remains valid not just asymptotically, ie for sample sizes presumed to be infinitely large, but rather, 
for the specific sample sizes we have in reality, enabling reliable application in actual, imperfect, non-
textbook settings 

This Post 2 covers 4, 5, 6, and 7 above.  The next Post 3 expands NAbC to cover 1 as well, using exactly the 
same angles-based framework.  The utility of using the foundational, but undeniably narrow case of the 
Gaussian identity matrix in this Post 2 rests in establishing the framework and proving out the mechanics 
of how and why it works, so that we can expand its range of application to the real-world cases of 
challenging, financial portfolio data.  Finally, in Post 4, I expand NAbC’s range of application to 
Characteristics 2 and 3 above, not only to challenging, real-world data conditions, but also 
simultaneously beyond Pearson’s to ALL positive definite measures of dependence. 
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