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Abstract

Six permutation test algorithms coded in SAS® are compared. The fastest (“OPDN™), which uses no
modules beyond Base SAS®, achieves speed increases orders of magnitude faster than the relevant “built-in”
SAS™ procedures (over 215x faster than Proc SurveySelect, over 350x faster than NPARIWAY (which
crashes on datasets less than a tenth the size OPDN can handle), and over 720x faster than Proc Multtest).
OPDN combines SAS™’s fast sequential access, its most efficient array manipulation and memory usage, and
a simple draw-by-draw procedure to very quickly and efficiently perform simple random sampling without
replacement (SRSWOR). The particular draw-by-draw method used allows for the repeated creation of
many SRSWOR permutation samples without requiring any additional storage or memory space. Based on
these results, there appear to be no faster or more scalable permutation test or SRSWOR algorithms in SAS®.
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I ntroduction

Permutation tests are as old as modern statistics (see Fisher, 1935), and their statistical properties are well
understood and well documented in the literature (see Mielke & Berry, 2001, and Pesarin, 2001, for
comprehensive treatments and extensive bibliographies). As nonparametric hypothesis tests that do not
make restrictive, and often unrealistic, parametric (distributional) assumptions about the data being tested,’
they also are very widely used and remain the most appropriate statistic of choice in a very wide range of
scientific and industry settings. Their only potential drawback lies in the fact that, as a data-intensive
resampling method, they can be runtime prohibitive, especially when applied to large or even medium-sized
data samples drawn from large datasets. The data explosion over the past few decades has made this a
common occurrence, and it highlights the increasing need for faster, and more efficient and more scalable,
permutation test algorithms.

* J.D. Opdyke is Managing Director of Quantitative Strategies at DataMinelt, a consultancy specializing in applied statistical,
econometric, and algorithmic solutions for the financial and consulting sectors. Clients include multiple Fortune 50 banks and
credit card companies, big 4 and economic consulting firms, venture capital firms, and large marketing and advertising firms. J.D.
has been a SAS®™ user for over 20 years and routinely writes SAS® code faster (often orders of magnitude faster) than SAS® Procs
(including but not limited to Proc Logistic, Proc MultTest, Proc Summary, Proc NPARIWAY, Proc Plan, and Proc SurveySelect).
He earned his undergraduate degree from Yale University, his graduate degree from Harvard University where he was a Kennedy
Fellow, and has completed additional post-graduate work as an ASP Fellow in the graduate mathematics department at MIT.
Additional of his peer reviewed publications spanning number theory/combinatorics, statistical finance, statistical computation,
applied econometrics, and hypothesis testing for statistical quality control can be accessed at www.DataMinelt.com.

' The only assumption made by a permutation test is that the subscripts of the data samples are exchangeable under the null
hypothesis.
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During this same time period, SAS®™ has grown to become one of the most widely used statistical computing
platforms globally.> The footprint of researchers and analysts using SAS® to perform permutation tests,
therefore, is considerable. This, and its reputation for speed, make SAS® a very good choice as a platform
for developing fast, scalable permutation test algorithms, and probing and expanding the limits on the speed
with which they can be executed on large datasets. Key to this effort, of course, is developing scalable, fast,
simple random sampling without replacement (SRSWOR), which serves as the core of the permutation test
approach to hypothesis testing.

This paper compares six permutation test algorithms coded in SAS®, three of which (OPDN, OPDN-ALt, and
Bebb-Sim) require only the Base SAS® module, and three of which (PROCSS, PROCMT, and PROCNPAR)
rely on SAS®™ Procedures available as part of the SAS/STAT® module. All implement the conventional
sampling-without-replacement permutation test, where the null hypothesis is the equality of the two
population distributions represented by the two samples, and the permuted statistic is the sample sum.’
However, four of the algorithms (OPDN, OPDN-AIt, Bebb-Sim, and PROCSS) easily can be modified to
permute any statistic, and the remaining two (PROCNPAR, which uses Proc NPARIWAY, and PROCMT,
which uses Proc Multtest) have a finite number of choices for permutation test statistics.

Background:
When is O(N) better than O(n) (even when N>>n)? Exploiting the Fast Sequential Access of SAS®

Key to this paper is the fact that SAS® is not a “matrix” language (like MATLAB or Gauss) or a “vector”
language (like S-Plus or R), but rather, with a few exceptions, it processes data sequentially, record-by-
record. Since the late 1970’s SAS® has become extremely fast and efficient at such sequential record
processing,” and naturally, this strongly shapes the algorithms presented herein. It also leads to a bit of a
paradox when comparing the time complexity of these algorithms: the real runtime ranking of these
algorithms, when implemented in SAS®, can deviate notably from a ranking based on their theoretical time
complexity. In other words, due to SAS™’s fast sequential access, O(N) algorithms are often “better” in
SAS™ than O(n) algorithms, even when N>>n. While this is important to note, and an example is explained
in the paper, the focus of this paper is real runtimes, and the speed with which SAS® users can obtain actual
results. Resource constraints such as I/O speeds, storage space, and memory are discussed below, and CPU
runtimes are presented alongside real runtimes in the Results section, but the goal here is not to develop or
compare algorithms based on their theoretical time complexity (although the time complexity of OPDN is
presented, based on its empirical runtimes).

2 See www.SAS.com. With over 45,000 registered user sites, SAS"™ is arguably the most widely used statistical platform globally,
even without including users of the many SAS® “clones” that exist as well (see WPS (from World Programming — see
http://teamwpc.co.uk/home), Dap (see http://www.gnu.org/software/dap/ and http://en.wikipedia.org/wiki/DAP_(software)), and
arguably Carolina (see DullesOpen.com, a unit of Dulles Research LLC), and formerly, PRODAS (from Conceptual Software) and
BASS (from Bass Institute)).

> Proc Multtest, as used in PROCMT, uses pooled-variance t-statistics, which provide a permutation p-value mathematically
identical to that provided by sample sums.

* To quote the author of a previous SAS® bootstrap paper that extols the virtues of PROC SurveySelect, “Tools like bootstrapping
and simulation are very useful, and will run very quickly in SAS .. if we just write them in an efficient manner.” (Cassell, 2007).

J.D. Opdyke, Managing Director, DataMinelt Page 2 of 40 ©2011 John Douglas Opdyke. All rights reserved.



The Six Algorithms

The six algorithms include: One Pass, Duplicates-No (“OPDN”), One Pass, Duplicates-No - Alternate
(“OPDN-AIt”), PROCSS (Proc SurveySelect)), PROCMT (Proc Multtest), PROCNPAR (Proc
NPARIWAY), and Bebb-Sim (Simultaneous Bebbington). SAS® v.9.2 code for all the algorithms is
presented in Appendix A, along with code that generates the datasets on which the algorithms are run to
produce the runtimes shown in the Results section. Each algorithm is a macro that is completely modular
and takes input values for six macro variables: the name of the input dataset, the name of the output dataset,
the name of the variable to be permuted, the “by variables” defining the strata, the name of the variable
designating the “Control” and “Treatment” samples, the number of permutation samples to be used in the
permutation test, and a value (optional) for a random number generation seed (one of the macros, PROCMT,
takes a value for a seventh macro variable: upper or lower p-values). Aside from general SAS®
programming language rules (e.g. file naming conventions), assumptions made by the code are minimal (e.g.
the variable designating the “Control” and “Treatment” samples contains corresponding values of “C” and
“T”, “by variables” are assumed to be character variables, and input datasets are presumed to be sorted by
the specified “by variables”). Each is discussed below.

OPDN:

This is a completely new and original memory-intensive algorithm, which is one of the reasons it is so fast.’
It uses no storage space, other than the original input dataset and a summary dataset of the record counts for
each stratum. OPDN makes one pass through the dataset, record by record, stratum by stratum, and
efficiently builds a large array of data values, essentially converting a column of data into a row of data (for
one stratum at a time).® The fast sequential access of SAS® ensures that the N-celled array (where N is the
size of the current stratum) is loaded with data values automatically, and very quickly, simply by using a
SET statement and a TEMPORARY array (which automatically retains values across records as each
record is being read). Then SRSWOR is performed, in memory, using this array. The approach for
SRSWOR is essentially that of Goodman & Hedetniemi (1977) which, as defined by Tille (2006), is a draw-
by-draw algorithm.” While Tille (2006) describes the standard draw-by-draw approach for SRSWOR as
having the major drawback of being “quite complex” (p.47), the draw-by-draw SRSWOR algorithm used by
OPDN unarguably is not: as shown below in pseudo code, it is straightforward and easily understood.

OPDN implementation #1 of Goodman & Hedetniemi (1982) for Permutation Tests:

*#* templ ] is the array filled with all the data values, for current stratum, of the variable being permuted
*#* psums|[] is the array containing the permutation sample statistic values for every permutation sample

do m= 1 to #pernutation tests
X «— 0
tot FREQ hold «— # records in current stratum
tot FREQ « tot FREQ hol d

> The only algorithm at all similar is OPDY (see Opdyke, 2010), a SAS® algorithm which is used to conduct very fast bootstraps
orders of magnitude faster than the relevant SAS® Procedure (Proc SurveySelect).

% The “One Pass” referenced in the name of this algorithm refers to SAS® making one sequential pass through the dataset when
reading it. The sampling without replacement that is done using the N-celled array, after the entire stratum of N data values has
been read into the array, obviously is not sequential or “one-pass.”

7 “Definition 37. A sampling design of fixed sample size n is said to be draw by draw if, at each one of the n steps of the
procedure, a unit is definitively selected in the sample” (p. 35).
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don=1to # records in smaller of Control and Treatnent sanples
cell «— uniformrandomvariate on 1 to tot FREQ
X — tenp[cell] + x
hold « tenp[cell]
temp[cell] « tenp[tot FREQ
tenp[tot _FREQ <« hold
tot FREQ «— tot FREQ -1

end;

psuns[m <« X

end;

An explanation of the SRSWOR algorithm is as follows: random draws are made from the array using a
uniform random variate, cell, drawn initially from 1 to N (where N is the size of the current stratum). The
value from temp[cell] is used in the calculation of the sample statistic, and then swapped with that of
temp[N]. This is repeated in a loop that iterates n times, where n is the size of the permutation sample (for
efficiency, n is always the smaller of either the Control or Treatment sample, by design), but in each loop N
is decremented by 1, so selected values cannot be selected more than once as they are placed at the end of the
array which is never again touched by the random number generator (see Appendix C for a simple proof of
this algorithm as a valid SRSWOR algorithm).

An alternate presentation of the SRSWOR algorithm is shown below, and it utilizes the fact that even if
statistical calculations are not being performed as the sample is being selected (as the sample sum is
cumulatively calculated above), the entire without-replacement-sample ends up in the last n cells of the
array. So if applying a function to this collective set of cells is faster or more efficient than cumulatively
calculating the sample statistic, it would be the preferable approach.

OPDN implementation #2 of Goodman & Hedetniemi (1982) for Permutation Tests:

*#* temp[] is the array filled with all the data values, for current stratum, of the variable being permuted
**% psums[] is the array containing the permutation sample statistic values for every permutation sample

do m= 1 to #pernutation tests
tot FREQ hold «— # records in current stratum

tot FREQ « tot FREQ hold
don=1to # records in smaller of Control and Treatnent sanples
cell <« uniformrandomvariate on 1 to tot_FREQ
hold «— tenp[cell]
tenp[cell] « tenp[tot_ FREQ
tenp[tot FREQ <« hold
tot FREQ «— tot FREQ -1
end;
psuns[m <« sun(tenp[tot_ FREQ to tenp[tot_ FREQ hold])
end;

While use of this general algorithm appears to be fairly widespread (for example, see Pesarin, 2001, p.81), it
does not appear to be common in some areas of statistics where it would be of benefit (for example, Tille
(2006), which is an authoritative statistical sampling resource, does not appear to present it), nor does it
appear to be in common usage within the SAS® community.
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In addition to its efficiency for drawing a single without-replacement sample, another crucially important
advantage of using this particular SRSWOR algorithm for performing permutation tests, or any statistical
procedure requiring many without-replacement samples, is that the same array of data values can be used
repeatedly, for generating all the permutation (SRSWOR) samples, even though it has been reordered by the
selection of the previous sample. Fortunately, the order of the data values in the array does not matter for
SRSWOR: the selection of each item is random, so sampling on the array can be performed regardless of the
initial order of the data values in its cells. This means that no additional storage space is required when
generating all the permutation samples — for each new without-replacement sample, the array simply can be
used as it was left from the previous sample. This makes the repeated implementation of SRSWOR, as
required by permutation tests, extremely fast and efficient: its runtime complexity is O(n), and its storage
(memory) space complexity is O(N).

Although Goodman & Hedetniemi’s (1982) approach has been modified and improved to require even less
than O(N) storage space (see Ernvall & Nevalainen, 1982), SAS®’s very fast built-in sequential access
automatically fills the entire N-celled ( TEMPORARY ) array much faster, under almost all conditions, than
SAS® could selectively fill an even much smaller array by choosing specific records using, say, a point=
option on a SET statement (and thus, O(N)<O(n) even when N>>n). With reasonable amounts of memory
(e.g. 16GB of RAM), only if the stratum size approaches one billion records will the N-cells be too many for
a TEMPORARY array and cause the program to crash (by comparison, Proc NPARIWAY crashes on
strata less than a tenth the size of those that OPDN can handle). So the OPDN code relying on Goodman &
Hedetniemi’s (1982) approach using the full N-celled ( TEMPORARY ) array is not only faster than
alternatives with smaller theoretical time and space complexity, but also, in SAS”, more robust than those
alternatives, and more than adequate for handling sampling from all but the very largest of datasets.

A final point regarding OPDN: because it is memory intensive, OPDN uses code to optimize SAS™’s
efficient use of memory, and to that end, the algorithm uses a data null and saves the calculated
permutation test results in macro variables cumulated by strata, rather than in a dataset specified in the data
step (which reserves a nontrivial amount of memory and decreases the size of the strata OPDN could
otherwise handle). This makes OPDN more robust, and for those familiar with SAS® macro code,
understanding it is not onerous. The precision loss due to saving numerical results in macro variables (which
are character strings) is, for most applications, trivial — to the tenth decimal place rather than the fourteenth.
If that additional precision is needed, the user probably should be using a symbolic programming language,
such as Mathematica®.

As described below, OPDN-AIt handles the data-step memory conservation issue a bit differently and with
slightly less code, but it typically is slightly slower as a result.

OPDN-AIt:

This algorithm (OPDN ‘“Alternative”) is essentially the same algorithm as OPDN but with one coding
difference: instead of saving the permutation p-values in macro variables cumulated by strata, rather than in a
dataset specified on the data step to conserve memory, the OPDN-AIt code creates an empty dataset with
missing values for all the necessary variables, and then uses a modify statement to update those values.®
Otherwise, the algorithm is identical. The only arguable advantage to this approach is that it uses slightly

¥ The idea of using a modify statement instead of macro variables cumulated by strata came from a SAS® user with the email
iebupdte@gmail.com who was commenting on the OPDY bootstrap algorithm presented in Opdyke (2010). When I asked for
his/her name, he/she would not provide it, so I can only give credit to the email for the suggestion to try this approach when
implementing the OPDN algorithm presented herein. I also modified the OPDY bootstrap algorithm presented in Opdyke (2010)
and implemented it as OPDY-Alt, with very similar results: OPDY is slightly faster than OPDY-Alt.
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less code. The unarguable disadvantage, however, is that it typically is slightly slower. That it is almost as
fast is not surprising, since it is essentially the same algorithm, with a slightly different (and less efficient)
approach to handling memory constraints in SAS®.

PROCSS:

PROCSS uses the built-in SAS® procedure, Proc SurveySelect, to create a sampling variable in the original
dataset indicating which records in the stratum are selected into the without-replacement random sample, and
multiple without-replacement samples can be created automatically for multiple strata. After this sampling is
performed by Proc SurveySelect, the (large) output sampling dataset is summarized according to the
permutation statistic being used with a Proc Summary, and the subsequent code calculating the permutation
test p-values is identical to that of OPDN and OPDN-Alt. According to the SAS® Online Documentation,
for simple random sampling without replacement, if there is enough memory Proc SurveySelect uses Floyd’s
ordered hash table algorithm (see Bentley and Floyd (1987) and Bentley and Knuth (1986) for details). If
there is not enough memory available for Floyd’s algorithm, Proc SurveySelect switches to the sequential
algorithm of Fan, Muller, and Rezucha (1962), which requires less memory but might require more time to
select the sample.’

Aside from speed, which is discussed in the Results section, the major disadvantage of relying on Proc
SurveySelect instead of OPDN, OPDN-AIt, or Bebb-Sim is that it requires disk space for the large output
sampling dataset that it generates, while these other algorithms have no such resource requirement.

PROCMT:

PROCMT uses Proc Multtest to calculate permutation test p-values, and prior to the relatively recent advent
of Proc SurveySelect, Proc Multtest had been widely used for this purpose. Although Proc Multtest does not
explicitly allow the user to specify sample sums as the permutation test statistic, using t-scores based on the
pooled-variance provides mathematically identical permutation test p-values, so the pooled-variance option
is specified in PROCMT. This option is easily changed if the assumption is not warranted by the dataset in
use.

One limitation of Proc Multtest is that for each time the Proc is used, it only provides one p-value (either the
left, right, or two-tailed p-value). So to obtain all three p-values the user must run the Proc three times. For
comparison purposes in this paper, PROCMT runs Proc Multtest twice, obtaining one one-tailed p-value
(specified by the user in a macro variable) and the two-tailed p-value. Since Proc NPARIWAY provides the
smaller of the two one-tailed p-values and the two-tailed p-value, and OPDN, OPDN-AIt, Bebb-Sim, and
PROCSS provide all three p-values, this appeared to be a reasonable compromise for purposes of
comparison. Obviously, if the user knows in advance that he/she only needs one of the three p-values, then
the runtimes presented in the Results section for PROCMT will be slightly less than twice as large as they
need to be.

Aside from speed, which is discussed in the Results section, the major disadvantage of relying on Proc
Multtest instead of OPDN, OPDN-AIlt, Bebb-Sim, or PROCSS is that the range of permutation test statistics
available to the user is limited, whereas any of the latter can use any permutation test statistic.

? Note that the SASFILE statement used with Proc SurveySelect (see Cassell, 2007) is useless when the datasets to be permuted
are too large for the extant memory — and that is the only time that fast permutation tests really are needed.
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PROCNPAR:

PROCNPAR uses Proc NPARIWAY to generate the smaller of the two one-tailed permutation test p-values
and the two-tailed permutation test p-value. The options specified execute Pitman’s permutation test, which
uses the data values themselves as scores, and the sum as the sample statistic, consistent with the five other
algorithms presented herein. The monte carlo option is used so that the number of permutation samples can
be specified by the user.

Aside from speed, which is discussed in the Results section, there are two major disadvantages to relying on
Proc NPARIWAY instead of OPDN. First, for a fixed amount of memory, Proc NPARIWAY crashes on
strata less than a tenth the size of those that OPDN can handle with no problem. Secondly, like Proc
Multtest, the range of permutation test statistics available to the user is limited, whereas OPDN, OPDN-Alt,
Bebb-Sim, and PROCSS can use any permutation test statistic.

Bebb-Sim:

“Simultaneous Bebbington” refers to Bebbington (1975), one of the first and most straightforward
sequential-sampling-without-replacement algorithms. Like the SRSWOR used in OPDN, Bebbington
requires that N is known ahead of time, and it makes exactly n selections from N items, each with equal
probability. But unlike OPDN, Bebbington is sequential: it makes a sample selection decision for each data
record as it is encountered, sequentially (in order), in the dataset. Bebbington (1975) is presented in pseudo-
code below for the reader’s convenience.

1. Initialize: Let i «< 0, N <« N+ 1, n < n

2. 1 «— i +1

3. If nn =0, STOP Algorithm

4. Visit Data Record i

5. N « N -1

6. Generate Uni form Random Variate u ~ Unifornf0O, 1]
7. If u>(n / N), G To 2.

8. O herwi se, Qutput Record i into Sanple

9. nNn «<n -1

10. Go To 2.

Bebbington’s (1975) algorithm above guarantees that 1) all possible samples of size n drawn from N are
equally likely; 2) exactly n items will be selected; 3) no items in the sample will be repeated; and 4) items in
the sample will appear in the same order that they appear in the population dataset.

The “Simultaneous” refers to the fact that two arrays of size m (where m is the number of permutation
samples) are created and used in the dataset to simultaneously execute Bebbington m times as the dataset is
being (sequentially) read, record by record. One array contains the cumulated test statistics for that
particular sample, and the other array contains the corresponding counters for each sample, counting the
number of items already selected into that sample (0’ in the algorithm shown above). The counters are
necessary to apply the correct probability of selection to each item in order to make the algorithm a valid
SRSWOR procedure.

Aside from speed, which is discussed in the Results section, an advantage of relying on Bebb-Sim rather than

Proc SurveySelect is that it is memory intensive, like OPDN, and does not require any disk space beyond the
input dataset and a small dataset of counts for each stratum.
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Other Possibilities:

Proc Plan:

Proc Plan can be used to conduct permutation tests, but since it does not have “by statement” functionality, it
must be used once for each set of by-variable values in the original dataset. These results can be SET
together and merged with the original dataset (after an observation counter that counts within each stratum is
created) to obtain without-replacement samples. However, this is a much slower method, and possibly part
of the impetus for the more recent creation of Proc SurveySelect.

DA:

The widely used and aging DA (Direct Access) method, which uses a SET statement with a point=x option,
where x is a random variate, to randomly select an observation in a dataset, was shown by Opdyke (2010) to
be far less efficient and far more than an order of magnitude slower than alternatives such as the OPDY
algorithm for calculating bootstraps (see Opdyke, 2010). In the permutation test setting, DA is now actually
irrelevant, since the only way (known to this author) to implement it is using Bebbington (1975) in a nested
loop, where an inner loop iterates N times to obtain a single sample without replacement, and an outer loop
iterates M times to obtain M without-replacement permutation samples (using this approach with only the
inner loop to obtain a single SRSWOR sample is common to many SAS® programs). While technically
possible to implement, a nested loop is extremely slow for this approach, and so it is not viable as a scalable
algorithm for executing fast permutation tests in SAS®.

Results

The real and CPU runtimes of each of the algorithms, relative to those of OPDN, are shown in Table 1 below
for different #strata, N = strata size, and m = size of the permutation samples (N = permutation sample size =
1,000 for all runs; for the absolute runtimes, see Table B1 in Appendix B). The code was run on a PC with
only 2 GB of RAM and a 2 GHz Pentium chip.

OPDN dominates in all cases, except that typically it is only slightly faster than OPDN-Alt which, as
mentioned above, is essentially the same algorithm, but with a slightly different and less efficient (and
slightly less speedy) approach to memory conservation.

The second fastest algorithm is Bebb-Sim, followed by PROCNPAR for the smaller datasets but PROCSS
for the larger datasets, and then PROCMT is much slower for all but the smallest datasets. Generally, the
larger the dataset, the larger the runtime premium OPDN has over the other algorithms, achieving real
runtime speeds 218x faster than PROCSS, 353x faster than PROCNPAR, and 723x faster than PROCMT. If
it was runtime feasible to run PROCSS and PROCMT on even larger datasets, all indications are that the
runtime premium of OPDN would only continue to increase. This would not be possible for PROCNPAR,
however, because Proc NPARIWAY crashes on datasets less than a tenth the size of those OPDN can handle
with no problem (with only 2 GB of RAM, NPARIWAY crashed on less than 10 million observations in the
largest stratum, while OPDN handled over 110 million observations in the largest stratum).

Note that another advantage OPDN has over PROCSS (Proc SurveySelect) is that it needs virtually no
storage (disk) space beyond the input dataset, while PROCSS needs disk space to output a potentially very
large sampling dataset that subsequently must be summarized at the sample level, according to the
permutation test statistic being used, to compare the permuted sample statistics to the original sample
statistic.
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Table1l: Real and CPU Runtimesof the Algorithms Relativeto OPDN for Various N, #strata, and m
(EX = excessive, CR = crashed, sample size n= 1,000 for all)

REAL CPU
N # OPDN PROC PROC PROCN Bebb| OPDN PROC PROC PROC  Bebb
(per stratum)  strata m -Alt SS MT PAR -Sim -Alt SS MT NPAR -Sim
10,000 2 500 1.2 1.1 47 42 29 1.1 9.1 6.0 41 42
100,000 2 500 1.7 19.8 66.9 159 154 1.1 217 96.7 23 223
1,000,000 2 500 1.1 337 1773 472 294 1.1 467 3216 853 534
10,000,000 2500 1.0 446 2555 36.4 1.0 574 4221 60.2
10,000 6 500 13 11.6 6.2 49 42 1.0 9.1 6.5 40 44
100,000 6 500 12 255 85.7 202 197 1.0 21.0 95.1 2.1 218
1,000,000 6 500 1.1 306 1605 535 267 1.1 537 3078 826 513
10,000,000 6 500 10 451 EX CR| 403 1.1 495 EX CR| 59.1
10,000 12 500 1.5 122 5.9 40 42 1.0 9.2 6.5 41 47
100,000 12 500 12 284 88.0 217 211 1.0 23.1 94.7 230 228
1,000,000 12 500 1.1 416 2221 618 374 1.1 414 2936 813 494
10,000,000 12 500 1.1 533 EX CR| 451 1.1 54.1 EX CR| 592
10,000 2 1000 1.1 152 6.5 40 44 1.0 10.3 6.8 41 47
100,000 2 1000 1.1 336 1049 237 243 1.0 292 1157 260 266
1,000,000 2 1000 13 96.6 4689 1250  79.1 1.0 823 5080 1347 858
10,000,000 21000 10 806 5043 733 1.0 96.6 7940 115.5
10,000 6 1000 1.0 12.6 6.5 40 46 1.0 9.5 6.8 40 48
100,000 6 1000 1.1 346 1133 258 265 1.0 276 1203 271 281
1,000,000 6 1000 1.0 557 2918 776 50.1 1.1 749 5204 1380 892
10,000,000 6 1000 10 853 EX CR| 792 1.1 94.3 EX CR| 1154
10,000 12 1000 1.0 133 6.6 43 47 1.0 9.6 6.7 42 48
100,000 12 1000 10 334 1150 274 265 1.0 258 1176 277 271
1,000,000 12 1000 10 784 4124 1116 70. 1.1 741 5161 1393 878
10,000,000 12 1000 10 998 EX CR| 887 11 913 EX CR| 1115
10,000 2 2000 13 10.9 5.4 3.5 39 1.0 9.3 6.5 39 47
100,000 22000 10 362 1225 278 283 1.0 296 1326 297 306
1,000,000 22000 10 1359 7231 1912 123.1 10 1161 7985 2112 1361
10,000,000 2 2000 10 1727 EX CR | 1436 10 2158 EX CR| 2279
10,000 6 2000 1.0 13.6 6.5 40 46 1.0 10.3 6.7 40 47
100,000 6 2000 10 388 1261 286 295 1.0 310 1315 297 307
1,000,000 6 2000 10 977 4979 1364 855 10 1228 8103 2148 1387
10,000,000 6 2000 11 2182 EX CR| 159.0 11 2483 EX CR| 2229
10,000 122000 1.0 15.0 6.5 42 47 1.0 115 6.7 42 48
100,000 122000 10 444 1319 307 304 1.0 355 1354 315 313
1,000,000 122000 10 1470 685.1 1857 1172 1.1 1364 7986 2164 1365
10,000,000 122000 11 EX EX CR| EX 11 EX EX CR| EX
7,500,000 22000 L1 2436 EX | 3530 2010 1.1 2140 EX | 3963 2275
7,500,000 6 2000 12 2420 EX | 3348 1939 11 2182 EX | 3825 2229
25,000,000 12500 1.2 EX EX CR| EX 1.1 EX EX CR| EX
50,000,000 12500 1.2 EX EX CR| EX 1.1 EX EX CR| EX
100,000,000 12500 1.0 EX EX CR| EX 1.0 EX EX CR| EX
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And finally, as mentioned above, the size constraint on OPDN is the size of the largest stratum in the dataset,
not the size of the entire dataset, which appears to be what drives the runtimes of Proc SurveySelect and Proc
Multtest (this does not appear to be the case for Proc NPARIWAY, but then, Proc NPARIWAY crashes on
much smaller strata). So OPDN maintains scalability on datasets potentially many, many orders of
magnitude larger than those the three Proc’s can handle.

In a nutshell, OPDN is not only much, much faster than all the other methods, but also far more robust. All
of these results combine to make OPDY the only truly scalable permutation test (and SRSWOR) algorithm
in SAS®.

Focusing on the real runtime of OPDN and its relationship to #strata, N, n, and m (see Graph 1), the
empirical runtimes in Table B1 yield a reasonably accurate approximation in (1), so OPDN appears to be
O(N*n*m), which is sensible.

Log;o(Real Runtime) =-5.95291 + 0.57001* Log;o(N*n*m) (where N = all N across strata) (1)

Graph 1: OPDN Real Runtimeby N*n*m (N = all strata)
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Conclusions

The goal of this paper was to develop a non-resource intensive permutation test algorithm faster than its
competitors on arguably the most widely used statistical software platform globally. The OPDN algorithm
accomplishes this objective. It uses negligible storage space, relatively little memory space via very efficient
SRSWOR, and on the SAS® platform, it is much faster than any other alternative, including the built-in
SAS™/STAT Procedures designed to perform permutation tests (Proc SurveySelect, Proc Multtest, and Proc
NPARIWAY). OPDN’s relative (and absolute) speed premium increases with dataset size, and with
reasonable time complexity (O(N*n*m)) it maintains scalability on large datasets, handling datasets
(technically, the largest stratum in the dataset) more than ten times larger than those that crash Proc
NPARIWAY. It is not only the fastest permutation test and SRSWOR algorithm in SAS®™, but also the most
robust. Given SAS™s reputation for speed compared to other statistical computing platforms, OPDN is
likely to be a serious contender for the fastest algorithm for these purposes among all major statistical
computing packages.

That said, it should be noted that the algorithm runtimes presented herein, and in any empirical algorithm
research for that matter, obviously can very much depend on the hardware configurations on which the
algorithms are run. Very fast I/O speeds on grid platforms, for example, may well allow Proc SurveySelect
to close the speed gap on OPDN. However, it is also likely that such platforms also will have comparably
souped-up memory resources, and thus, OPDN may retain or even increase its already large speed lead: all
else equal, as a rule, memory processing always will be faster than I/O processing, and OPDN does not need
to create and write to disk the sampling dataset that Proc SurveySelect needs to generate.

The code provided herein allows for testing and comparisons on different platforms, and this author
welcomes feedback from readers regarding the relative performance of the algorithms across an array of
hardware configurations.
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Appendix A

SAS® v.9.2 code for the OPDN, OPDN-Alt, PROCSS, PROCMT, PROCNPAR, and Bebb-Sim algorithms, and the
SAS®™ code that generates the datasets used to test them in this paper, is presented below.

khkkkhkhkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhkhhhkhhhkhhhkhhhhhhhhkhhhdhhhkhhhkhhhkrkhkrkkhkrk*x*
khkkkhkhkkhkhkhhkhkhhhkhhhkhhhhhkhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhdhhhdhhhdhhhdhhhkrkhkrkkhkrk*x*

PROGRAM  MFPTUS. SAS

DATE: 12/ 30/ 10

CODER: J.D. Opdyke
Managi ng Director, Quantitative Strategies
Dat aM nel t

PURPOSE: Run and conpare 6 different SAS Perrmutati on Tests al gorithns
i ncl uding OPDN, OPDN alt, PROCSS, PROCMI, PROCNPAR, and BEBB_SI M
See "Pernutation Tests (and Sanpling with Replacenent) O ders of
Magni t ude Faster Using SAS' by J.D. Opdyke for detail ed explanations
of the different algorithns.

| NPUTS: Each macro is conmpletely nmodul ar and accepts 6 nmacro paraneter
val ues (PROCMI accepts 7):

i ndat a = the input dataset (including |Iibname)

out dat a = the input dataset (including |Iibname)

byvars = the "by variables" defining the strata (these are
character vari abl es)

sanp2var = the (character) variable defining the two sanples in each
stratum TEST ("T") and CONTROL ("C'), with those val ues

per mvar = the variable to be tested with pernutation tests

num psnps = nunber of Pernutation Test sanples

seed = and optional random nunmber seed (nust be an integer or

bl ank)

"left" or "right" depending on whether the user wants
| ower or upper one-tailed p-values, respectively, in

addition to the two-tailed p-value (only for PROCM)

left_or_right

QUTPUTS: A SAS dataset, naned by the user via the nacro variabl e outdat a,
whi ch contains the foll ow ng vari abl es:

1) the "by variables" defining the strata

2) the nane of the pernuted variable

3) the size (# of records) of the permutation sanples (this should
al ways be the smaller of the two sanples (TEST v. CONTRCOL))

4) the nunber of permutation sanples

5) the left, right, and two-tail ed p-val ues corresponding to the
fol |l ow ng hypot heses:

p_left = Pr(x>X | Ho: Test>=Control)
p_right = Pr(x<X | Ho: Test<=Control)
p_both = Pr(x=X| Ho: Test=Control)

where x is the sanple perrmutation statistic fromthe Control
sanmple (or the additive inverse of the Test sanmple if the Test
sample is smaller, which is atypical) and X is the distribution of
permut ation statistic val ues.

Fol | owi ng standard convention, the two-tailed p-value is

cal cul ated based on the reflection nethod.
EE IR I I I IR I I b I b I I I I b I I I I R S I A R I I I I I I R I b L R I I I I R R I I I I S I I b I b I b I b I R b I I

R I O I I O R I S I I R I I I R O I R O I R R I S O

* Kk Kk«
’
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options
| abel synbol gen full stimer yearcutof f=1950 nocenter s = 256 ps = 51
meynt abmax=max npri nt m ogi c nm noper at or mndelimter=" "' cleanup

i bname MFPTUS "c:\";
%VACRO nmakedat a(strata_si ze=, testproportion=, nunsegs=, nungeogs=);

*** Since generating all the datasets bel ow once takes only a couple of ninutes,
time was not wasted trying to optimze runtines for the creation of nere
test data.

* Kk k-
’

% et numstrata = %val (& unsegs. *&nungeogs. ) ;

*** The variable "cntrl _test” identifies the test and control sanples with

val ues of "T" and "C' respectively.
* k% -

data MFPTUS. pricing _data_&nunstrata.strata_&strata_size. (keep=geography segnent cntrl _test
price sortedby=geography segnent);
format segnent geography $8. cntrl _test $1.
array seg{3} $ _TEMPORARY_ ('segnentl' 'segment2' 'segnent3');
array geog{4} $ _TEMPORARY_ ('geogl' 'geog2' 'geog3 'geog4');
strata_size = 1* &strata_size.
do x=1 to &nungeogs. ;
geogr aphy=geog{ x} ;
do j=1 to &nunsegs.;
segnent =seg{]j };
if j=1 then do i=1 to strata_size;
if nmod(i, & estproportion.)=0 then do;
cntrl _test="T";
price=(rand(' UNIl FORM ) +0. 175/ (&t est proportion./ (& estproportion./10)));
end;
el se do;
cntrl _test="C";
price=rand(' UNIl FORM ) ;
end;
out put ;
end;
else if j=2 then do i=1 to strata_size;
if nmod(i, & estproportion.)=0 then do;
cntrl _test="T";
price=rand(' PO SSON , 1- 0. 75/ (&t est proportion./ (& estproportion./10)));
end;
el se do;
cntrl _test="C";
price=rand(' PO SSON , 1. 0);
end;
out put ;
end;
else if j=3 then do i=1 to strata_size;
*** Make Control smaller to test code in algorithnmns.;
if mod(i, & estproportion.)=0 then cntrl_test="C"
el se cntrl _test="T";
price=rand(' NORVAL');
out put ;
end;
end;
end;
run;
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9%vEND nmakedat a;

Y%akedat a(strata_size=10000, testproportion=10, nunsegs=2, nungeogs=1);
Y%akedat a(strata_size=10000, testproportion=10, nunsegs=2, nungeogs=3);
%akedat a(strata_si ze=10000, testproportion=10, nunsegs=3, nungeogs=4);

%akedat a(strata_si ze=100000, testproporti on=100, nunsegs=2, nungeogs=1);
Y%akedat a(strata_si ze=100000, testproporti on=100, nunmsegs=2, nungeogs=3);
Y%akedat a(strata_si ze=100000, testproporti on=100, nunmsegs=3, nungeogs=4);

%akedat a(strata_si ze=1000000, testproporti on=1000, nunsegs=2, nungeogs=1);
%rakedat a(strata_si ze=1000000, testproporti on=1000, nunsegs=2, nungeogs=3);
Y%rakedat a(strata_si ze=1000000, testproporti on=1000, numsegs=3, nungeogs=4);

%rakedat a(strata_si ze=10000000, testproportion=10000, nunsegs=2, nungeogs=1);
%akedat a(strata_si ze=10000000, testproportion=10000, nunsegs=2, nungeogs=3);
%akedat a(strata_si ze=10000000, testproportion=10000, nunsegs=3, nungeogs=4);

%akedat a(strata_si ze=7500000, testproporti on=7500, nunsegs=2, nungeogs=1);
%akedat a(strata_si ze=7500000, testproportion=7500, nunsegs=2, nungeogs=3);

Y%rakedat a(strata_si ze=25000000, testproportion=25000, nunsegs=2, nungeogs=1);
%akedat a(strata_si ze=50000000, testproportion=50000, nunsegs=2, nungeogs=1);
%akedat a(strata_si ze=100000000, testproporti on=100000, nunsegs=2, nungeogs=1);

* % % O:)u\l alt * Kk k-
* % % O:)u\l_alt * Kk k-
* % % O:)u\l_alt * Kk k-

%VACRO OPDN al t (num _psnps=,
i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per nvar =,
seed=

)

*** |f user does not pass a value to the optional macro variable "seed," use -1
based on the tine of day.

* Kk Kk«

W&f’WSysevalf(@&uperq(seed)=,boolean) % hen % et seed=-1;

*** To minimze intermediate menory requirenents, initialize output data set
with m ssing variabl e val ues.

* Kk Kk«
’

dat a &out dat a. (sortedby=&byvars.);

st op;

set & ndat a( keep=&byvars.);

Il ength pernmvar $32 n_psanp num psnps p_left p_right p_both
di stance_right distance_ |eft |astbi nnumlastbinsize
pnmed pnean tot FREQ incr x 8;

call mssing(of _all_);

run;

*** (Cbtain counts and cunul ated counts for each strata.
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proc summary dat a=& ndata. nway;
cl ass &byvars. &sanp2var. ;

var &pernvar. ;
out put out =byvar_sum( keep
sum

_FREQ &byvars. &sanp2var. sunpvar)
sumnpvar

run;

*** | dentify and keep the snaller of the two sanples for nore efficient
sanpling. Below, invert the enpirical pernmutation distribution if CONTROL
sanple is smaller that TEST sanple (which is not typical). That wll
remai n consi stent wi th output variables corresponding to:

p_left = Pr(x>X | Ho: Test>=Control)
p_right Pr(x<X | Ho: Test<=Control)
p_both Pr(x=X | Ho: Test=Control)
where x is the sanple pernutation statistic and X is the distribution of

permutation statistic val ues.
* Kk k-

% et |last_byvar = %scan(&byvars.,-1);

dat a byvar_sum nmi n(keep=tot_ FREQ FREQ &byvars. &sanmp2var. sunpvar sortedby=&byvars.);

set byvar_sum
format tot FREQ FREQ 16.;
by &byvars.;
retain |lag_FREQ | ag_sum | ag_sanmp2;
if first. & ast_byvar. then do;
| ag_FREQ = FREQ ;
lag_sum = sunpvar;
| ag_sanp2 = &sanp2var. ;
end;
el se do;
tot FREQ = sum(l ag_FREQ _FREQ);
if FREQ <=l ag FREQ t hen out put;

el se do;
_FREQ_ = | ag_FREQ
sumpvar = lag_sum
&sanp2var. = | ag_sanp2;
out put ;
end;
end;
run;

*** Get size of largest stratumfor efficient (re)use of _TEMPORARY_ array.;

proc sgl noprint;
sel ect max(tot _FREQ) into :nmax_tot_freq from byvar_summn;
quit;

*** |n case nunber is large, avoid scientific notation.;
% et max_tot _freq = %ysfunc(putn(&max_tot_freq., 16.));

dat a &outdata. ;
if O then nodify &outdata.;

*** To view permutation distributions for each strata in .log file.,
comment out first line below this comrent, uncoment the line belowit, and
uncoment "put _ALL " 35 lines belowit. Note that this will slow program
execution and often create large .log files.
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* Kk k-

array psuns[&um psnps.] _TEMPORARY_;
* array psunms{&ium psnps.} psnpl-psnmp&um psnps. ;
array tenp[ &max_tot _freq.] _TEMPORARY _;
retain numpsnps &um psnps. ;
do n_=1by 1 until(last. & ast_byvar.);
nerge & ndata. (keep=&byvars. &pernvar. &sanp2var.)
byvar _sum m n

by &byvars.;
tenp[ _n_] =&pernvar. ;
end;
seed = 1*&seed.;
do mrl to num psnps;
x=0;
tot FREQ incr = tot_ FREQ
do n=1 to _FREQ ;
cell = floor(ranuni(seed)*tot FREQ incr) + 1;
X = tenp[cell] + x;
hold = tenp[cell];
tenp[cell]=temp[tot FREQ incr];
tenp[tot _FREQ incr] = hold;
tot FREQ incr+(-1);
end;
psuns[n = x;

end;

n_psanp = _FREQ ;
p_right = 0;

p_ left = 0;
p_both = 0;

call sortn(of psums[*]);
pmed = nedi an(of psunms[*]);
pmean = nean(of psuns[*]);

* put _ALL_;
*** Efficiently handl e extreme test sanple val ues.;

| F sunpvar <psuns[ 1] THEN DG
p_| eft=0;
p_ri ght =num psnps;
p_bot h=0;

END;

ELSE | F sunpvar >psuns[ num psnps] THEN DG,
p_I| eft =num psnps;
p_ri ght =0;
p_bot h=0;

END;

ELSE DO

*** For non-extrenme cases, start with shorter tail for |ess |ooping.;

i f pmed>=sunpvar then do;
do z=1 to num psnps;
i f sunpvar>=psuns[z] then p_|eft+1;
el se do;
| ast bi nnum = z-1;
di stance_| eft = pnean - psuns|[z-1];
| eave;
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end;
end;

*** Avoid loop for other (larger) p-value.
I f sunpvar equals last bin, p_right =1 - p_left + |astbhinsize.
QO herwise, p_right =1 - p_left.

* K k-
’

i f sunpvar = psuns[lastbi nnun] then do;
| ast bi nsi ze=1;
do k=lastbinnumto 1 by -1
i f psuns[k]=psuns[k-1] then | astbhinsize+l

| eave;
end;
p_right = numpsnps - p_left + |astbinsize;
end;
el se p_right = numpsnps - p_left;
end;
el se do;

do z=num psnps to 1 by -1;
i f sunpvar<=psuns[z] then p_right+1

el se do;
| ast bi nnum = z+1;
di stance_right = psuns[z+l1] - pnean;
| eave;
end;
end;

*** Avoid loop for other (larger) p-val ue.
If psumequals last bin, p_left =1 - p_right + |astbinsize.
QO herwise, p left =1 - p_right.

* Kk k-
’

i f sunpvar = psuns[lastbi nnun] then do;
| ast bi nsi ze=1;
do k=l astbi nnumto num psnps;
i f psuns[ k] =psuns[ k+1] then | astbinsize+l
el se | eave

end;

p_left = numpsnps - p_right + |astbinsize;
end;
else p left = numpsnps - p_right;

end;

*** Base 2-sided p-value on distance frommean of last (i.e. |least extrene) bin
of smaller p-value. This is common practice.

* Kk Kk«
’

if p_ left<p right then do;
p_both = p_left;
do z=num psnps to 1 by -1;
if (psuns[z] - pnean) >= distance_ |left then p_both+1
el se | eave
end;
end;
else if p_left>p_right then do;
p_both = p_right;
do z=1 to num psnps;
if (pnean - psuns[z]) >= distance_right then p_both+1
el se | eave
end;
end;
el se p_bot h=num psnps;

J.D. Opdyke, Managing Director, DataMinelt Page 17 of 40 ©2011 John Douglas Opdyke. All rights reserved.



*** Account for possibility, due to psumra particular bin value, that
p_bot h>num psnps.

* k *

b_both = m n(p_bot h, num psmnps) ;
END;

*** | f CONTROL sanple is smaller than TEST (which is atypical), reverse
*** p-values, as enpirical distributionis mrror of itself.;

i f &sanp2var.="C"' then do;
hold = p_left;
p_left = p_right;
p_right = hol d;

end;

p_left = p_left / numpsnps;
p_right = p_right / num psnps;
p_both = p _both / num psnps;

| engt h pernvar $32;

retain pernvar "&pernvar";
out put ;

run;

data &outdata. ;
set &outdat a. (keep=&byvars. permvar num psnps n_psanp p_left p_right p_both);
| abel permar "Pernuted Vari abl e"

n_psanp = "Size of Pernutation Sanpl es”
num psnps = "# of Pernutation Sanpl es”
p_left = "Left p-val ue"

p_right = "Ri ght p-val ue"

p_bot h = "Two- Tai l ed p-val ue"

run;

*** (Optional.;

proc datasets |ib=work nemype=data kill nodetails;
run;

%END OPDN al t

% OPDN_al t (num_psnps 1000,

i ndat a = MFPTUS. pricing _data_ 2strata_ 100000,
out dat a = MFPTUS. OPDN alt 100000 _2strat a,
byvars = geography segnent,
sanp2var = cntrl _test,
per mvar = price,
seed =
);
* k% % O:)D\l ~k~k~k;
* k% (]Du\l ***;
* k% (]Du\l ***;

%VACRO OPDN( num _psnps=,
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i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per mvar =,
seed=

)

*** The only assunption nade within this nmacro is that the byvars are al
character variables and the input dataset is sorted by the "by variabl es”
that define the strata. Also, the "TEST" and "CONTROL" sanpl es are defined
by a variable "cntrl_test" formatted as $1. containing "T" and "C'
character strings, respectively, as val ues.

* Kk k-
’

*** Cbtain the |ast byvar, count the byvars, and assign each byvar into nunbered

macro variabl es for easy access/ processing.
* Kk k-

% et |ast_byvar %scan( &byvars., -1);
% et num byvars %sysfunc(count w &yvars.));
%lo i =1 % o0 &um byvars.;
% et byvar& . = U%scan(&byvars., & .);
%end;

*** |f user does not pass a value to the optional macro variable "seed," use -1
based on the tine of day.

* ok k.

% f Y%syseval f (%superq(seed)=, bool ean) % hen % et seed=-1;
*** (Cbtain counts and cunul ated counts for each strata.

proc summary dat a=& ndata. nway;
cl ass &byvars. &sanp2var. ;

var &pernvar. ;
out put out =byvar _sum( keep
sum

_FREQ &byvars. &sanp2var. sunpvar)
sumpvar

run;

*** | dentify and keep the snaller of the two sanples for nore efficient
sampling. Below, invert the enpirical permutation distribution if CONTROL
sample is smaller that TEST sanple (which is not typical). That wll
remai n consi stent with output variables corresponding to:

p_ left = Pr(x>X | Ho: Test>=Control)
p_right = Pr(x<X | Ho: Test<=Control)
p_both = Pr(x=X | Ho: Test=Control)

where x is the sanple permutation statistic and X is the distribution of
permutati on statistic val ues.

* Kk Kk«
’

dat a byvar_sum nmi n(keep=tot_ FREQ FREQ &byvars. &sanmp2var. sunpvar sortedby=&byvars.);
set byvar_sum
format tot FREQ FREQ 16.
by &byvars.;
retain |lag_FREQ | ag_sum | ag_sanp2;
if first.& ast_byvar. then do;
| ag_FREQ = FREQ ;
lag_sum = sunpvar;
| ag_sanp2 = &sanp2var. ;
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end;

el se do;
tot FREQ = sum(l ag_FREQ _FREQ);
if _FREQ <=l ag_FREQ t hen out put;

el se do;
_FREQ_ = lag_FREQ
sunpvar = lag_sum
&sanp2var. = | ag_sanp2;
out put ;
end;
end;
run;

*** Obtain number of strata, and use this nunber to count and separately permute

each strata bel ow.

* Kk k-
’

% et dsid = %ysfunc(open(byvar_summin));

, rstr(Y%ysfunc(attrn(&dsid., nobs))

% et

rc %sysfunc(cl ose(&dsid.));

avoid scientific notation.

% et n_byvals = %ysfunc(ifc(&dsid.
)
, drstr(0)
)
)
*** |n case nunber is |arge,
% et n_byvals = %sysfunc(putn(&n_byvals., 16.));

* % %

Cumul ate counts of strata for efficient
data byvar_sum mi n(drop=prev_freq);
set byvar_sum m n;
format cumprev_freq FREQ 16.;
retain cumprev_freq O;
prev_freq = lag(tot FREQ;
if n_=1 then prev_freq 0;
cum prev_freq sumcum prev_freq,
run;

*** For access in data step bel ow (that
conservation), put
b) total counts for each strata,
permut ati on vari abl e,

val ues.
* k% % -

proc sq
sel ect
quit;
proc sql
sel ect
quit;
proc sq
sel ect
quit;
proc sql
sel ect
quit;

noprint;

_freq_into :fregs separated by
noprint;
tot_FREQ into :tot_ FREQ separated
noprint;

cumprev_freq into :cumprev_freqgs

noprint;

sunpvar into :sunpvar separated by

J.D. Opdyke, Managing Director, DataMinelt

uses data null_ for
into macro strings a) snaller-of-tw-sanple counts,
c) cunmul ated tota
d) which of two sanples is snmaller,

(re)use of _TEMPORARY_ array.;

prev_freq);

menory

counts, d) sumred

and e) byvar

from byvar _sum m n;

by ' from byvar_sum mi n;

separated by ' ' from byvar_summ n;

from byvar _sum m n;
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proc sqgl noprint;
sel ect &sanp2var. into :sanp2var separated by
quit;

from byvar _sum m n;

%lo i =1 % 0 &um byvars.;
proc sqgl noprint;
sel ect &&byvar& . into :byval s& . separated by
quit;

from byvar_sum m n;

%end;

*** Get size of largest stratumfor efficient (re)use of _TEMPORARY_ array.;

proc sgl noprint;
sel ect max(tot _FREQ into :nmax_tot freq separated by
quit;

from byvar _sum m n;

*** |n case nunber is large, avoid scientific notation.;
%et max_tot _freq = %ysfunc(putn(&max_tot_freq., 16.));

*** Save each stratuns results in cunul ated macro vari abl es instead of
outputting to a dataset on the data step to | essen internediate nenory
requi renents.

* % %
’

*** |nitialize macro variabl es used bel ow. ;
et p_left =

% et p_right =

% et p_both =;

% et sanp_snall _size =

data _null _;
set & ndata.;
by &byvars.;
format which_sanmple $1.;
*** To view pernmutation distributions for each strata in .log file.,
conmment out first line below this comment, uncomrent the two |ines bel ow
it, and uncoment "put _ALL " 37 lines belowit. Note that this will slow
program execution and often create large .log files.
* Kk k.
array psuns{&ium psnps.} _TEMPORARY_;
array psuns{&ium psnps.} psnpl-psnp&um psnps. ;
* retain byval _counter O cumprev_freq O psnpl-psnp&um psnps.;
array tenp{&max_tot _freq.} _TEMPORARY_;
retain byval counter 0 cumprev_freq O;

temp[ _n_-cum prev_freq] =&per nvar. ;

if last. & ast_byvar. then do;
byval counter+1;
num _psnps = &um psnps. *1;
psnp_size = 1 * scan("& reqgs.", byval counter,' ');
whi ch_sanpl e = COMPRESS( UPCASE(scan( " &sanp2var.", byval _counter,' "))," ');
tot FREQ hold = 1 * scan("& ot FREQs.", byval counter,' ');
seed = 1*&seed.;

do mrl to num psnps;
x=0;
tot FREQ = tot FREQ hol d;
do n=1 to psnp_size;

J.D. Opdyke, Managing Director, DataMinelt Page 21 of 40 ©2011 John Douglas Opdyke. All rights reserved.



cell = floor(ranuni(seed)*tot FREQ + 1;
X = tenp[cell] + x;

hold = tenp[cell];

temp[cel | ] =tenmp[tot_ FREQ;

tenmp[tot FREQ = hold;

tot _FREQ+(-1);

end;
psunms[mM = Xx;
end;
psum = 1*scan("&sunpvar.", byval counter,' ');
p_right = 0;
p left = 0;
p_both = 0;

call sortn(of psums[*]);
pmed = nedi an(of psums[*]);
pmean = nean(of psuns[*]);

* put _ALL_;
*** Efficiently handl e extrene test sanple val ues.;

| F psunkpsuns[ 1] THEN DG,
p_l eft =0;
p_ri ght =num psnps;
p_bot h=0;

END;

ELSE | F psunpsuns[ num psnps] THEN DG,
p_l ef t =num _psnps;
p_ri ght =0;
p_bot h=0;

END;

ELSE DO

*** For non-extrenme cases, start with shorter tail for |ess |ooping.;

i f pmed>=psum then do;
do z=1 to num psnps;
i f psump=psuns[z] then p_left+1;
el se do;
I ast bi nnum = z-1;
di stance_| eft = pnean - psuns|[z-1];
| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.
If psumequals last bin, p_right =1 - p_left + |astbhinsize.
O herwise, p_right =1 - p_left.

*k k.

i f psum = psuns[| astbi nnum then do;
| ast bi nsi ze=1;
do k=l astbinnumto 1 by -1;
i f psums[ k] =psuns[k-1] then | astbinsize+l;

| eave;
end;
p_right = numpsnmps - p_left + |astbhinsize;
end;
el se p_right = numpsnps - p_left;
end;
el se do;
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do z=num psnps to 1 by -1
i f psunk=psuns[z] then p_right+1
el se do;
| ast bi nnum = z+1;
di stance_right = psuns[z+1l] - pnean;
| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.
If psumequals last bin, p left =1 - p_right + |astbinsize.
QO herwise, p left =1 - p_right.
***;
i f psum = psuns[| ast bi nnum then do;
| ast bi nsi ze=1;
do k=l astbi nnumto num psnps;
i f psuns[k]=psuns[ k+1] then | astbinsize+l
el se | eave

end;

p_left = numpsnps - p_right + |astbhinsize;
end;
else p left = numpsnps - p_right;

end;

*** Base 2-sided p-value on distance fromnmean of last (i.e. |east extrene) bin
of smaller p-value. This is common practice.

* Kk k-
’

if p_left<p_right then do;
p_both = p_left;
do z=num psnps to 1 by -1
if (psuns[z] - pnean) >= distance |eft then p_both+1
el se | eave
end;
end;
else if p left>p right then do;
p_both = p_right;
do z=1 to num psnps;
if (prean - psuns[z]) >= distance_right then p_both+1
el se | eave
end;
end;
el se p_bot h=num psnps;

*** Account for possibility, due to psumra particular bin value, that
p_bot h>num psnps.

* % %

p_both = min(p_both, num psnps);

END;

p left = p.left [/ numpsnps;
p_right = p_right / num psnps;
p_both = p _both / num psnps;

*** | f CONTROL sanple is smaller than TEST (which is atypical), reverse
*** p-values, as enpirical distributionis mrror of itself.;

i f "C'=COWRESS(UPCASE(scan("&sanmp2var.", byval counter,' "'))," ') then do;
hold = p_left;
p_left = p_right;

J.D. Opdyke, Managing Director, DataMinelt Page 23 of 40 ©2011 John Douglas Opdyke. All rights reserved.



p_right = hol d;
end;

*** Cunul ate key macro variables to save results.;

call synput('p_left',synget('p_left')||" "||conpress(p_left));
call synput('p_right',synget('p_right')]||" "||conpress(p_right));
call synput (' p_both',synget('p_both')||" "||conpress(p_both));
cumprev_freq = 1*scan("&um prev_freqgs.", byval _counter+1,' ');
end;
run;

*** (Obtain and assign the format of each byvar, all of which are assuned to be
character variabl es.

* Kk k-
’

dat a | ens(keep=l ens);
set & ndata. (keep=&byvars. firstobs=1 obs=1);
do i=1 to &um byvars.;
| ens = vl engt hx(scan("&byvars.",i));
out put ;
end;
run;
proc sgl noprint;

select lens into :alllens separated by ' ' fromlens;
quit;
%racro assign_formats;
%lo i =1 % o0 &um byvars.;
&&byvar & . $%scan(&alllens., & .).
%end;
%rend assign_formats;
*** Assign each byvar value for each stratum;
%racro assi gn_byvar_val s(which_strata=);
%lo j=1 % o0 &um byvars.;
&&byvar & . = scan("&&byval s& .", &hich_strata.,' ');

%end;
%rend assign_byvar _val s;

*** Unwi nd and assign all the cunul ated nacro vari ables.;

dat a &out dat a. (sortedby=&byvars. drop=n_byvals i);
n_byvals = 1*&n_byval s. ;
format %assign_formats;
do i=1 to n_byvals;
| engt h pernmvar $32;

permvar = "&pernmvar.";

n_psanp = 1 * scan("&regs.", i," ');
num psnps = &num psnps. ;

p_left = 1*scan("&p_left.",i," ");
p_right = 1*scan("&p_right.",i," ");
p_both = 1*scan("&p _both.",i," ');
%assi gn_byvar _val s(which_strata = i)

| abel permar "Pernuted Vari abl e"

n_psanp = "Size of Pernmutation Sanpl es”
num psnmps = "# of Pernutation Sanpl es”
p_left = "Left p-val ue"

p_right = "Ri ght p-val ue"
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p_both = "Two- Tai |l ed p-val ue"

out put ;

end;

r

* k *

un;

Optional . ;

proc datasets |ib=work nemype=data kill nodetails;

r

un;

%VEND OPDN,

%OPDN( num_psnps

* % %

* % %

* k *

1000,

M-PTUS. prici ng_data_2strata_ 100000,
MFPTUS. OPDN_100000_2strat a,

geogr aphy segnent,

cntrl _test,

price,

i ndat a
out dat a
byvars
sanp2var
per mvar
seed

);

PROC_SS ***;
PROC_SS ***;
PROC_SS ***;

%VACRO PROCSS( num psnps=,

* % %

* % %

% f

* % %

i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per mvar =,
seed=

);

I f user does not pass a value to the optional nmacro variable "seed," use -1
based on the tine of day.

’WSysevaIf(@SUperq(seed):,boolean) % hen % et seed=-1

bt ai n counts and cunul ated counts for each strata.

proc summary dat a=& ndata. nway;
cl ass &byvars. &sanp2var. ;
var &pernvar. ;

out put out =byvar_sum( keep

r

* % %

_FREQ &byvars. &sanp2var. sunpvar)
sumpvar

sum

un;

Identify and keep the smaller of the two sanples for nore efficient
sanpling. Below, invert the enpirical pernutation distribution if CONTROL
sanple is smaller that TEST sanple (which is not typical). That wll
remai n consi stent wi th output variables corresponding to:

p_left = Pr(x>X | Ho: Test>=Control)
p_right = Pr(x<X | Ho: Test<=Control)
p_both = Pr(x=X| Ho: Test=Control)
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where x is the sanple pernutation stat

permutati on statistic val ues.
* k% -

% et |ast_byvar = %scan(&byvars.,-1);
dat a byvar _sun( keep=&byvars.
set byvar_sum(renane=(_FREQ = NSI ZE ));
by &byvars.;
retain | ag_NSI ZE | ag_sum | ag_sanp2;
if first. & ast_byvar. then do;
| ag_NSI ZE = _NSI ZE_;

lag_sum = sunpvar;
| ag_samp2 = &sanp2var.;
end;
el se do;
i f _NSIZE <=l ag_NSI ZE t hen out put;
el se do;
_NSIZE_ = | ag_NSsl ZE;
sumpvar = lag_sum
&sanp2var. = | ag_sanp2;
out put ;
end;
end;
run;

* % %

From SAS Onli ne Docunentation
For sinple random sanpling w thout
for it

repl

SURVEYSELECT switches to the sequentia

_NSI ZE_ sumpvar &sanp2var.

stic and X is the distribution of

sort edby=&byvars.);

acenent, if there is enough nenory

PROC SURVEYSELECT uses Fl oyds ordered hash table al gorithm (see
Bentl ey and Floyd (1987) and Bentley and Knuth (1986) for details).
there is not enough nmenory avail able for

| f
Fl oyds al gorithm PROCC

al gorithmof Fan, Muller, and

Rezucha (1962), which requires |ess nenory but mght require nore tinme to
sel ect the sanple.
***;
proc surveysel ect data = & ndat a. (drop=&sanp2var.)
nmet hod = srs
sanpsi ze = byvar_sun{ keep=&byvars. _NSIZE )
rep = &num psnps.
seed = &seed.
out = PSS _per m Sanps(drop=Sanpl i ng\Wei ght Sel ecti onPr ob)
noprint;
strata &byvars.;
run;

proc summary data=PSS per m Sanps nway;
cl ass &byvars. replicate
var &pernvar. ;

out put out =PSS_per m suns( sort edby=&byvars.
run;

replicate keep=&byvars. replicate &permvar.) sun¥;

proc transpose data=PSS perm suns out =PSS perm suns_t (rename=(_NAVE =permvar)) prefix=psnp;

var &pernvar. ;

by &byvars.;
id replicate
run;

dat a &out dat a. (keep=&byvars.
error

per nvar

nerée PSS perm suns_t (i n=i nsanps)

J.D. Opdyke, Managing Director, DataMinelt
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byvar _sum(i n=i nsumary)

by &byvars.;

if insanps & i nsummary then do;
array psuns[ &um psnps.] psnpl-psnp&ium psnps. ;
n_psanp = _NSI ZE ;

num _psnps = 1*&num psnps. ;
p_left = 0;
p_right = 0;
p_both = 0;

call sortn(of psuns[*]);
pmed = nedi an(of psums[*]);
pmean = mean(of psunms[*]);

*** Efficiently handl e extrene test sanple val ues.;

| F sunpvar <psuns[ 1] THEN DG,
p_l eft =0;
p_ri ght =num psnps;
p_bot h=0;

END;

ELSE | F sunpvar >psuns[ num psnps] THEN DG
p_l ef t =num psnps;
p_ri ght =0;
p_bot h=0;

END;

ELSE DO

*** For non-extrene cases, start with shorter tail for |ess |ooping.

i f pmed>=sunpvar then do;
do z=1 to num psnps;
i f sunpvar>=psuns[z] then p_left+1
el se do;
| ast bi nnum = z-1;
di stance_| eft = pnean - psuns|[z-1];
| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.
I f sunpvar equals last bin, p_right =1 - p_left + |astbhinsize.
O herwise, p_right =1 - p_left.

*k k.

i f sunpvar = psuns[lastbi nnun] then do;
| ast bi nsi ze=1;
do k=l astbinnumto 1 by -1
i f psums[ k] =psuns[k-1] then | astbinsize+l

| eave;
end;
p_right = numpsnmps - p_left + |astbhinsize;
end;
el se p_right = numpsnps - p_left;
end;
el se do;

do z=num psnps to 1 by -1
i f sunpvar<=psuns[z] then p_right+1
el se do;
| ast bi nnum = z+1;
di stance_right = psuns[z+1l] - pnean;
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| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.
If psumequals last bin, p_left =1 - p_right + |astbinsize.
QO herwise, p left =1 - p_right.
***;
i f sunpvar = psuns[lastbinnun] then do;
| ast bi nsi ze=1;
do k=l astbi nnumto num psnps;
i f psuns[ k] =psuns[ k+1] then | astbinsize+l
el se | eave

end;

p_left = numpsnps - p_right + |astbhinsize;
end;
else p left = numpsnps - p_right;

end;

*** Base 2-sided p-value on distance fromnmean of last (i.e. |east extrene) bin
of smaller p-value. This is conmmon practice.

* Kk Kk -
’

if p_left<p_right then do;
p_both = p_left;
do z=num psnps to 1 by -1
if (psuns[z] - pnean) >= distance |eft then p_both+1
el se | eave
end;
end;
else if p_ left>p right then do;
p_both = p_right;
do z=1 to num psnps;
if (prean - psuns[z]) >= distance_right then p_both+1
el se | eave
end;
end;
el se p_bot h=num psnps;

*** Account for possibility, due to psumra particular bin value, that
p_bot h>num psnps.

* % %

p_both = min(p_both, num psnps);

END;

p left = p.left [/ numpsnps;
p_right = p_right / num psnps;
p_both = p _both / num psnps;

*** | f CONTROL sanple is smaller than TEST (which is atypical), reverse
*** p-values, as enpirical distributionis mrror of itself.;

i f &samp2var.="C" then do;
hold = p_left;
p_left = p_right;
p_right = hol d;
end;

"Permuted Vari abl e"
"Size of Pernutation Sanples”

| abel permar
n_psanp
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num psnps = "# of Permutation Sanpl es
p_left = "Left p-val ue”
p_right = "Ri ght p-val ue"
p_bot h = "Two- Tai |l ed p-val ue"
out put &out dat a.

end;

el se output error;

run;

proc datasets |ib=work nemype=data kill nodetails;
run;

%VEND PRCCSS;

YPROCSS( num psnps = 1000,
i ndat a = MFPTUS. pricing _data_2strata_ 100000,
out dat a = MFPTUS. PROCSS 100000_2str at a,
byvars = geography segnent,
sanp2var = cntrl _test,
per mvar = price,
seed =
)

x%* PROC MI ***:
* % * PR(I:_MT ok k-
* % * PR(I:_MT ok k-

%VACRO PROCMT( num psnps=,
i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per mvar =,
seed=,
left_or_right=
)

*** |f user does not pass a value to the optional nmacro variable "seed,"
generate a random seed and use it for all three proc multtests bel ow
(al t hough SAS Onli neDoc says seed=-1 should work, it does not).

% f Y%syseval f (%uper q(seed) =, bool ean)

% hen % et seed=%ysfunc(ceil (¥%syseval f(1000000000*%sysfunc(ranuni (-1)))));

*** Un/conment test statenments bel ow to perform pernutation tests based
on different assunptions about the variance structure of the sanples.;

* Kk Kk«
’

proc nulttest data = & ndat a.
nsanmpl e = &um psnps.
seed = &seed.
out = m _output_results_ 2t (keep=&yvars. permp renane=(perm p=xp_both))

per mut ati on
noprint;
by &byvars.;
cl ass &sanp2var. ;
* test mean (&pernvar. / DDFMESATTERTHWAI TE)
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test mean (&pernvar.);
run;

*** To make runtine results conparable to PROC NPARLWAY, which provides only
two-tailed p-value and the snmaller of the right or left p-values, run
two of the three PROC MULTTESTs and cal cul ate the second tail as one
m nus the given tail, which will usually be very close to the actua
val ue unless the data is highly discretized.

* Kk k-
’

proc nul ttest data = & ndata.
nsanpl e &num psnps.
seed = &seed.
% f 9AJPCASE( %sysfunc(conpress(& eft_or _right.)))=RI GHT % hen %do;
out = m _output_results up(keep=&byvars. permp renanme=(perm p=xp_right))

%end;
% f 9IPCASE( ¥%sysfunc(conpress(& eft_or_right.)))=LEFT % hen %lo;
out = m _output_results_| om keep=&byvars. permp rename=(perm p=xp_left))
%end;
per mut ati on
noprint;
by &byvars.;
cl ass &sanp2var.;
% f 9JPCASE( %sysfunc(conpress(& eft_or _right.)))=RI GHT % hen %do;
* test mean (&pernvar. / upper DDFM=SATTERTHWAI TE)
test mean (&pernvar. [/ upper);
%end;
% f 9IPCASE( ¥%sysfunc(conpress(& eft_or_right.)))=LEFT % hen %lo;
* test mean (&pernvar. / | ower DDFM=SATTERTHWAI TE)
test mean (&pernvar. / |ower);
%end;
run;

proc summary dat a=& ndata. nway;

cl ass &byvars. &sanp2var. ;
var &pernvar. ;

out put out=byvar_frq(keep

n

_FREQ_ &byvars.)
t oss

run;

% et |ast_byvar = %scan(&byvars.,-1);
dat a byvar frqg(keep=&byvars. xn_psanp sortedby=&byvars.);
set byvar frq(renane=(_FREQ =xn_psanp));
by &byvars.;
retain | ag_FREQ
if first.& ast_byvar. then |l ag_FREQ = xn_psanp;

el se do;
i f xn_psanmp<=l ag_FREQ t hen out put;
el se do;
xn_psanp = |lag FREQ
out put ;
end;
end;
run;

dat a &out data. (drop=xn_psanmp xp_l eft xp_both)
error
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% f 9JPCASE( %sysfunc(conpress(& eft_or _right.)))=LEFT % hen %lo;

nmerge nmt_output_results_| ow(in=inl ow)
nt _out put _results_2t(in=in2t)
byvar _frq(in=infrq)

i f in2i & inlow & infrqg then do

format pernvar $32.
permvar = "&pernvar.";
n_psanp = xn_psanp;

num _psnps = 1*&num psnps. ;
p left = xp_left;

p_right = .;

%end;

% f 9JIPCASE( ¥%sysfunc(conmpress(& eft_or_right.)))=RI GHT % hen %do;

nerge nt_out put_results_up(i n=i nup)
nt _out put_results 2t (in=in2t)
byvar _frq(in=infrq)

if in2t & inup & infrq then do;
format pernvar $32.
permvar = "&permvar.";
n_psanp = xn_psanp;
num psnps = 1*&num psnps. ;

p_right = xp_right;
p_left = .;
%end;

p_both = xp_bot h;

| abel permar = "Permuted Vari abl e"
n_psanp = "Size of Permutation Sanpl es”
num psnps = "# of Pernutation Sanpl es”
p_left = "Left p-val ue"
p_right = "Ri ght p-val ue"
p_bot h = "Two- Tai |l ed p-val ue"

out put &out dat a.
end;
el se out put error;
run;

proc datasets |ib=work
run;

%VEND PROCMI

%PROCMT( num_psnps
i ndat a
out dat a
byvars
sanp2var
per mvar
seed
left_or_right
)

* k *

PROCNPAR ***;
PROCNPAR ***;
PROCNPAR ***;

* k *

* k%

J.D. Opdyke, Managing Director, DataMinelt

nment ype=data kill nodetails;

1000,
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MFPTUS. PROCMTI_100000_2str at a,

geogr aphy segnent,
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price,

| eft
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%VACRO PROCNPAR( num psnps=,
i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per nvar =,
seed=

)

*** |f user does not pass a value to the optional macro variable "seed," use -1
based on the tine of day.

* Kk k-

Waf’WSysevalf(@SUperq(seed):,boolean) % hen % et seed=-1;

ods listing close;
proc npar lway dat a
scores

& ndat a
dat a

var &pernvar. ;

by &byvars.;

cl ass &sanp2var. ;

exact scores=data / n=&um psnps. seed=&seed.

ods out put DataScoresMC = hol d( keep &byvars. Nanel Label 1 nVal uel
wher e (Label1 = "Estimte")

)

run;
ods |isting;

proc transpose data
out

hol d( dr op=Label 1)
&outdata. (drop = _NAVE );

by &byvars.;
id Namel;
var nVal uel;
run;

proc summary dat a=& ndata. nway;

cl ass &byvars. &sanp2var. ;
var &pernvar. ;

out put out=byvar _frq(keep

n

_FREQ_ &byvars. &samp2var.)
t oss

run;

% et |ast_byvar = %scan(&byvars.,-1);
data byvar frg(keep=&yvars. permvar n_psanp num psnps &sanp2var. sortedby=&byvars.);
set byvar _frq
by &byvars.;
format pernvar $32.
retain pernvar "&permar.'
n_psanp = _FREQ ;
num _psnps = 1*&num psnps. ;
if first. & ast_byvar. then do;
| ag_FREQ = n_psanp;
| ag_sanmp2 = &sanp2var.;

| ag_FREQ | ag_sanp?2 ;

end;
el se do;
i f n_psanmp<=l ag_FREQ t hen out put;
el se do;
n_psanp = |ag FREQ
&sanp2var. = | ag_sanp2;
out put ;
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end;
end;
run;

dat a &outdata. (drop=hold ntpl _data ncpr_data ncp2_data &sanp2var.)

error

nerée byvar _frq(in=infrq)
&out dat a. (i n=i nresul ts)

by &byvars.;

if inresults & infrg then do;

p_left = ncpl_data;

p_right = nctpr_data;

p_both = ntp2_data;

| abel permvar = "Pernmuted Vari abl e"
n_psanp = "Size of Pernutation Sanpl es”
num psnmps = "# of Pernutation Sanpl es”
p_left = "Left p-val ue"
p_right = "Ri ght p-val ue"
p_both = "Two- Tai |l ed p-val ue"

*** | f CONTROL sanple is smaller than TEST (which is atypical), reverse
*** p-val ues, as enpirical distributionis mrror

i f &sanp2var.="C
hold = p_left;

t hen do;

p_left = p_right;
p_right = hol d;

end;

out put &out dat a.

end;

el se out put error;

run;
%VEND PROCNPAR

%PROCNPAR( num_psnps
i ndat a
out dat a
byvars
sanp2var
per mvar
seed

)

*** BEBB_SIM ***,;
*** BEBB_SIM ***,;
*** BEBB_SIM ***;

1000,

geogr aphy segnent,
cntrl _test,
price,

%VACRO BEBB_SI M hum psnps=,
i ndat a=,
out dat a=,
byvar s=,
sanp2var =
per nvar =,
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seed=

)

*** |f user does not pass a value to the optional macro variable "seed," use -1
based on the tine of day.

* Kk k-

W&f’WSysevalf(@&uperq(seed)=,boolean) % hen % et seed=-1;

*** Cbtain counts for each strata.

proc summary data=& ndata. nway;
cl ass &byvars. &sanp2var.;

var &pernvar. ;
out put out =byvar_sum( keep
sum

_FREQ &byvars. &sanp2var. sunpvar)
sunpvar

run;

% et |ast_byvar = %scan(&byvars.,-1);
data byvar _sum m n(keep=tot_ FREQ FREQ &byvars. &sanp2var. sunpvar sortedby=&byvars.);
set byvar_sum
by &byvars.;
retain | ag_FREQ | ag_sum | ag_sanp2;
if first. & ast_byvar. then do;
| ag_FREQ = _FREQ ;
lag_sum = sunpvar;
| ag_samp2 = &sanp2var.;
end;
el se do;
tot FREQ = sum(l ag FREQ FREQ);
if FREQ <=l ag FREQ then output;

el se do;
_FREQ_ = lag_FREQ
sunpvar = |lag_sum
&sanp2var. = | ag_sanp2;
out put ;
end;
end;
run;

*** Glightly faster to use nacro variable value strings and scan() than to nerge
_FREQ etc. onto the "indata" dataset, especially for |large "indata"
dat aset s.
* % % ’
proc sqgl noprint;
select freq_into :fregs separated by

from byvar _sum m n;

quit;

proc sgl noprint;
select tot FREQinto :tot FREQs separated by ' ' from byvar_summ n;
quit;

proc sqgl noprint;
sel ect sunpvar into :sumpvar separated by '
quit;

proc sqgl noprint;
sel ect &sanp2var. into :sanp2var separated by
quit;

from byvar_sum mi n;

from byvar _sum m n;

*** gsinmultaneously create all pernstrap sanples and sunmmari ze results of each
as the end of stratumis reached

J.D. Opdyke, Managing Director, DataMinelt Page 34 of 40 ©2011 John Douglas Opdyke. All rights reserved.



* Kk k-
’

% et |ast_byvar = %scan(&byvars.,-1);

dat a &out dat a. (keep=&byvars. permvar n_psanp numpsnps p_left p_right p_both);

set & ndata. (keep=&byvars. &permvar.) end=l astrec;
by &byvars.;

retain pernvar "&pernmvar” n_psanp 0 num psnmps &num_

array snall n_counter{&um psnps.} _TEMPORARY_;
array psuns{&uum psnps.} _TEMPORARY_;

if first. & ast_byvar. then do;
byval counter+1

_freq_ = 1*scan("&fregs.", byval counter,' ');

n_psanp = _FREQ ;
tot FREQ = 1*scan("&t ot FREQs.", byval _counter,'

bi gN _counter = tot_ FREQ+1
do i=1 to num psnps;

smal I n_counter[i] = _FREQ ;
psunms[i] = 0;
end;
end;
bi gN _counter +(-1);

m n_mac_res_inl oop = &pernmvar.;

seed=1* &seed.
if last. & ast_byvar.~=1 then do i =1 to num psnps;

psnps. ;

")

i f ranuni (seed) <= smalln_counter[i]/bigN counter then do;

psunms[i] = min_mac_res_inloop + psuns[i];
snmal I n_counter[i]+(-1);
end;
end;
el se do i =1 to num psnps;
if smalln_counter[i]>0 then psuns[i] = nmin_mac_r
end;

if last. & ast_byvar. then DO

*** | f CONTROL sanple is smaller than TEST (which is
*** order of enpirical distribution.

sunpvar = 1*scan("&sumpvar.", byval counter,' ');
p_left = 0;
p_right = 0;
p_both = 0;

call sortn(of psuns[*]);
pred = medi an(of psuns[*]);
pmrean = mean(of psums[*]);

*** Efficiently handl e extrene test sanple val ues.;
| F sunpvar <psuns[ 1] THEN DO
p_l eft =0;
p_ri ght=num psnps;
p_bot h=0;
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END;

ELSE | F sunpvar >psuns[ num psnps] THEN DG,
p_l ef t =num psnps;
p_ri ght =0;
p_bot h=0;

END;

ELSE DO

*** For non-extrenme cases, start with shorter tail for |ess |ooping.;

i f pmed>=sunpvar then do;
do z=1 to num psnps;
i f sunpvar>=psuns[z] then p_left+1;
el se do;
I ast bi nnum = z-1;
di stance_| eft = pnean - psuns|[z-1];
| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.
I f sunpvar equals last bin, p_right =1 - p_left + |astbhinsize.

O herwise, p_right =1 - p_left.

*k k.

i f sunpvar = psuns[lastbi nnun]i then do;
| ast bi nsi ze=1;
do k=l astbinnumto 1 by -1;
i f psums[ k] =psuns[k-1] then | astbinsize+l;

| eave;
end;
p_right = numpsnmps - p_left + |astbhinsize;
end;
el se p_right = numpsnps - p_left;
end;
el se do;

do z=num psnps to 1 by -1;
i f sunpvar<=psuns[z] then p_right+1;
el se do;
I ast bi nnum = z+1;
di stance_right = psuns[z+1l] - pnean;
| eave;
end;
end;

*** Avoid |loop for other (larger) p-val ue.

If psumequals last bin, p_left =1 -
O herwise, p_left =1 - p_right.

*k k.

p_right + |astbinsize.

i f sunpvar = psuns[lastbi nnun]i then do;
| ast bi nsi ze=1;
do k=l astbi nnumto num psnps;
i f psums[ k] =psuns[ k+1] then | astbinsize+1;
el se | eave;
end;
p_left = numpsnps - p_right + |astbhinsize;
end;
else p_left = numpsnps - p_right;
end;

*** Base 2-sided p-value on distance fromnmean of last (i.e. |east extrene) bin
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of smaller p-value. This is common practice.

* Kk Kk -
’

if p_left<p_right then do;
p_both = p_left;
do z=num psnps to 1 by -1
if (psuns[z] - pnean) >= distance_ |eft then p_both+1
el se | eave
end;
end;
else if p left>p right then do;
p_both = p_right;
do z=1 to num psnps;
if (pnean - psuns[z]) >= distance_right then p_both+1
el se | eave
end;
end;
el se p_bot h=num psnps;

*** Account for possibility, due to psumra particular bin value, that
p_bot h>num psnps.

* % %

p_both = min(p_both, num psnps);

END;

p left = p.left [/ numpsnps;
p_right = p_right / num psnps;
p_both = p _both / num psnps;

*** | f CONTROL sanple is smaller than TEST (which is atypical), reverse
*** p-values, as enpirical distributionis mrror of itself.;

i f "C'=COWRESS( UPCASE(scan("&samp2var.", byval counter,' "')),"' ') then do;
hold = p_left;
p_left = p_right;

p_right = hol d;

end;

| abel permar "Pernuted Vari abl e"

n_psanp = "Size of Pernutation Sanpl es”
num psnps = "# of Pernutation Sanpl es”
p_left = "Left p-val ue"
p_right = "Ri ght p-val ue"
p_bot h = "Two- Tai |l ed p-val ue"
out put &out dat a.
END;
run;
proc datasets |ib=work nemype=data kill nodetails;
run;

%VEND BEBB_SI M

9%BEBB_SI M num psnps = 1000,
i ndat a = MFPTUS. pricing _data 2strata_ 100000,
out dat a = MFPTUS. BEBB_SI M 100000 2str at a,
byvars = geography segnent, samp2var=cntrl _test,
per mvar = price
seed =
)
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Appendix B

Table B1: Real and CPU Runtimes (minutes) of the Algorithmsfor Various N, #strata, and m

(EX = excessive, CR = crashed, sample size n = 1,000 for all)

REAL CPU
N # OPDN PROC PROC Bebb OPDN PROC PROC PROC Bebb
(per stratum) strata m OPDN -Alt PROCSS MT NPAR -Sim OPDN -Alt SS MT NPAR -Sim
10,000 2 500 0.01 0.01 0.12 0.05 0.05 0.03 0.01 0.01 0.06 0.04 0.03 0.03
100,000 2 500 0.02 0.03 037 1.24 0.29 0.29 0.01 0.01 0.27 1.23 0.28 0.28
1,000,000 2500 0.10 0.11 321 16.87 449 2.80 0.05 0.06 243 16.78 4.45 278
10,000,000 2 500 0.77 0.75 3423 196.31 27.98 0.46 0.48 2654 19530 27.85
10,000 6 500 0.02 0.03 0.24 0.13 0.10 0.09 0.02 0.02 0.18 0.12 0.08 0.09
100,000 6 500 0.04 0.05 1.09 3.67 0.87 0.84 0.04 0.04 0.81 3.65 0.85 0.84
1,000,000 6 500 031 035 9.60 50.36 13.65 8.39 0.16 0.17 7.11 50.13 13.44 835
10,000,000 6 500 2.08 2.18 94.02 83.95 1.41 1.51 69.76 | EX | CR 83.25
10,000 12 500 0.04 0.06 051 025 0.17 0.18 0.04 0.04 0.35 0.24 0.16 0.18
100,000 12 500 0.08 0.10 234 7.23 1.78 1.74 0.08 0.08 175 7.18 1.74 1.73
1,000,000 12 500 045 047 18.61 99.33 27.61 16.73 0.34 036 13.93 98.85 27.39 16.65
10,000,000 12 500 373 397 19846 168.05 2.82 314 15242 | EX | CR 166.61
10,000 2 1000 0.01 0.01 021 0.09 0.05 0.06 0.01 0.01 0.12 0.08 0.05 0.06
100,000 2 1000 0.02 0.02 0.78 245 0.55 0.57 0.02 0.02 0.61 2.43 0.55 0.56
1,000,000 2 1000 0.07 0.09 6.86 33.29 8.88 5.62 0.07 0.07 5.36 33.10 8.78 5.59
10,000,000 2 1000 0.77 0.78 6195  387.61 56.31 0.49 0.51 4691 38575 56.10
10,000 6 1000 0.04 0.04 0.48 025 0.15 0.18 0.04 0.04 034 0.24 0.15 0.17
100,000 6 1000 0.06 0.07 2.24 735 1.67 1.72 0.06 0.06 1.68 732 1.65 171
1,000,000 6 1000 0.34 0.34 18.97 99.45 26.44 17.06 0.19 021 14.26 99.05 2627 16.98
10,000,000 6 1000 2.14 224 18230 169.39 1.46 155 137.71 | EX | CR 168.44
10,000 12 1000 0.07 0.07 0.98 0.49 0.32 035 0.07 0.07 0.69 0.48 0.30 035
100,000 12 1000 0.13 0.13 427 14.70 3.50 3.39 0.12 0.13 321 14.63 3.44 3.37
1,000,000 12 1000 0.49 0.51 3803  200.03 54.13 34.01 0.39 0.41 2858 199.15 53.76 33.86
10,000,000 12 1000 3.81 399 379.94 337.96 3.01 318 275.03 | EX | CR | 33585
10,000 2 2000 0.03 0.04 033 0.16 0.10 0.12 0.02 0.02 0.23 0.16 0.10 0.11
100,000 2 2000 0.04 0.04 1.44 4.86 1.10 112 0.04 0.04 1.08 484 1.08 112
1,000,000 2 2000 0.09 0.09 12.34 65.69 17.37 11.19 0.08 0.08 9.52 65.48 17.32 11.16
10,000,000 2 2000 0.78 0.81 134.49 111.84 0.49 051  105.60 ‘ EX CR 111.53
10,000 6 2000 0.07 0.07 1.01 0.49 030 0.34 0.07 0.07 0.75 0.48 0.29 0.34
100,000 6 2000 0.12 0.12 447 14.50 3.29 339 0.11 0.11 3.40 14.45 3.26 338
1,000,000 6 2000 0.40 0.40 3870  197.25 54.03 33.86 0.24 025 2979 196.62 52.12 33.66
10,000,000 6 2000 2.11 232 46133 336.08 1.50 164  372.84 ‘ EX ‘ CR | 33472
10,000 12 2000 0.15 0.14 222 0.96 0.61 0.69 0.14 0.14 1.64 0.96 0.60 0.68
100,000 12 2000 0.22 0.22 9.82 29.20 6.79 6.72 021 0.22 7.60 28.98 6.74 6.70
1,000,000 12 2000 0.57 0.60 8437 39325 10657 67.28 0.49 052 6694  391.97 106.21 67.01
10,000,000 12 2000 3.79 4.07 ‘ EX ‘ EX ‘ CR ‘ EX 3.02 333 ‘ EX ‘ EX ‘ CR EX
7,500,000 2 2000 0.42 047 10238 EX | 14837 84.48 037 040  79.23 EX 146.70 84.20
7,500,000 6 2000 1.31 152 317.34 EX | 438.96 254.20 1.14 126 247.98 EX 43472 25333
25,000,000 12 500 1.36 1.58 EX EX CR EX 1.13 1.21 EX EX CR EX
50,000,000 12 500 2.84 338 EX EX CR EX 2.26 242 EX EX CR EX
100,000,000 12500 6.12 6.41 EX EX CR EX 4.64 4.85 EX EX CR EX
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Appendix C

For the convenience of the reader, a proof is provided below for the validity of the SRSWOR procedure used
by OPDN, which is essentially the approach of Goodman & Hedetniemi (1982). The algorithm as
implemented in OPDN is shown again below.

OPDN implementation of Goodman & Hedetniemi (1982) for Permutation Tests:

*#* templ ] is the array filled with all the data values, for current stratum, of the variable being permuted
*#* psums|[] is the array containing the permutation sample statistic values for every permutation sample

do m= 1 to #pernutation tests
X «— 0
tot FREQ hold «— # records in current stratum
tot FREQ « tot FREQ hol d
don=1to # records in smaller of Control and Treatnent sanples
cell «— uniformrandomvariate on 1 to tot_FREQ
X — tenp[cell] + x
hold « tenp[cell]
tenp[cell] « tenp[tot_ FREQ
tenp[tot _FREQ <« hold
tot FREQ «— tot FREQ -1
end;
psuns[m <« X
end;

For a sampling algorithm to be a valid SRSWOR procedure, the probability of selecting any without-
replacement sample of n items from a population of N items (N > n) needs to equal the probability of
selecting any other without-replacement sample of n items, and that probability is:

1 NY Z N -n)!/N!
Pr(drawing any particular sample of n items from larger group of N items) = nl- n'( n)/ - (CD)

because there are N — choose — n possible without-replacement samples.

Using the algorithm shown above, the probability of drawing the first item is 1/N, and the probability of
drawing the second item is 1/(N-1) and the probability of drawing the third item is 1/(N-2), and so on.
Because each of these draws is independent of the others, the probability of drawing a sample of any n items
is the product of these probabilities:

Pr(drawing any particular sample of n items from larger group of N items) =
1 1 1 1 1
N (N _1) (N _2) Tt (N -n +2) (N -n +1) * the number of permutations of these n items (because

we do not care about the ordering of the n items, only that a particular set of n items is drawn), which is n!.

n-1
. . . . ny [T(N-i)
So Pr(drawing any particular sample of n items from larger group of N items) = - (C2)
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But in fact, (C1) = (C2), as shown below.

n!(N -n)! :[n(n—l)(n—z)---Z EI]][(N -n)(N -n-1)(N -n -2)---2 EI]] _
N! N(N-1)(N=2)--+(N =n+1)(N -n)(N -n -1)---20
[n(n—l)(n—2)---2 EI]] o

VNN 2 =] B (©2)

1=0

(c1)=
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