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1. Introduction  

1.1. Executive Summary 
 

Financial institutions have invested tremendous resources to develop operational risk capital 
models within the framework of the Advanced Measurement Approach (AMA) of the Basel II 
Accord.  Most of this effort has focused on satisfying evolving regulatory requirements in the 
near term rather than risk-conscious business decision making in the long term.  However, a 
critical objective of the Basel II Accord is to move institutions beyond viewing operational risk 
capital modeling as a mere regulatory exercise to embedding operational risk awareness into 
risk-informed decision making throughout the institution.  To this end, we illustrate in this 
chapter the use of the Influence Function as a powerful analytical tool that allows the operational 
risk practitioner to leverage existing AMA models to generate critical quantitative insights for 
direct business decision-making by users of operational risk capital estimates.   
 
Borrowed from the robust statistics literature, the Influence Function (IF) is an extremely useful 
and relevant methodology that provides a theoretical basis for capital planning and business 
decision making via exact sensitivity analysis.  Because it is based on analytic derivations, the IF 
avoids the need to perform often resource-intensive, arguably subjective, and often inconclusive 
or inaccurate simulations.  We clearly demonstrate how the IF utilizes any given estimator of the 
severity model (easily the main driver of estimated capital requirements), the values of its 
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parameter estimates, and an assumed forward looking frequency to define Exact Sensitivity 
Curves for Regulatory Capital and Economic Capital.  These curves can be used to conduct exact 
sensitivity analyses on the capital impacts of hypothetical changes to the underlying loss data.  
Hypothetical loss scenarios of interest to bank management may be current or prospective, such 
as assessing the potential capital impact of a single hypothetical “tail” event of differing 
magnitudes.  Relevant loss scenarios also may be retrospective, providing “but for” and exact 
attribution analyses as to why capital changed from one quarter to another.  The information 
generated from these sensitivity analyses can suggest potential enhancements to the estimation of 
severity model parameters, and more broadly, better inform decision-making based on a more 
precisely defined risk profile. 
 

1.2. Background 
 
The Basel II Accord represents a major step forward in the regulation and supervision of the 
international financial and banking system.  The risk measurement and risk management 
principles and guidelines put forth in the Basel II Accord aim to increase the stability and 
soundness of the banking system through comprehensive capital adequacy regulation.  The 
approach includes the “three pillars” concept, in which stability and soundness is enhanced 
through minimum capital requirements (Pillar 1), supervisory review (Pillar 2), and market 
discipline via public disclosure requirements (Pillar 3).  Among the major changes in this second 
Basel Accord are a greater reliance on banks’ internal data systems to provide inputs to capital 
calculations and the extension of capital requirements to a new risk class, operational risk.  This 
chapter focuses on the quantitative use of banks’ internal data for assessing operational risk 
exposure.1 
 
Operational risk is the risk of financial loss due to external events or due to inadequate or failed 
internal processes, people, or systems, including legal risk, but not reputational or strategic risk.  
Essentially, operational losses are the many different ways that a financial institution may incur a 
financial loss in the course of business aside from market, credit, or liquidity related exposure.2  
The Basel II Accord describes three potential methods for calculating capital charges for 
operational risk, and our focus in this chapter is on the most empirically sophisticated of the 
three – the Advanced Measurement Approach (AMA).3  National bank regulators typically 
require internationally active banks and banks with significant operational risk exposure 

                                                 
1 The methods examined and developed herein are readily applicable to the use of external loss data as well, such as 
that proffered by any of several banking consortiums.  But the capital management and business planning that are 
informed by these methods would, in all likelihood, take place at the level of the individual bank or financial 
organization, and hence, make internal loss data most relevant. 
2 Additional information about the Basel II Accord and it specific framework for operational risk, including the 
definition of operational risk and standardized classification schemes for loss events according to business line 
(Annex 8) and event type (Annex 9), can be found in Basel Committee on Banking Supervision (hereafter, BCBS) 
(2006). 
3 The other two approaches in the Basel II framework are The Standardized Approach (TSA) and the Basic Indicator 
Approach (BIA).  See BCBS (2006). 
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(generally, the largest banks) to use the AMA.4  Some of the advantages of the AMA are that it 
permits financial institutions to develop a customized quantification system that makes use of 
historical data (which may include both internal and external loss data), bank specific 
information on internal controls and other relevant business factors, and the forward-looking 
assessments of potential risk generated by the bank’s business experts via scenario analysis.  The 
flexibility of the AMA arguably is also one of its major limitations – operational risk 
practitioners, regulators, and academics have engaged in vigorous debates on issues of 
methodology and best practices, yet many challenges remain unresolved since the framework 
was finalized in 2004 despite more than eight years of concerted efforts.5   
 
In the AMA framework, an institution attempts to quantify operational risk exposure at a very 
high percentile of the enterprise aggregate annual loss distribution.  Using the Value-at-Risk 
(VaR) risk measure, regulatory capital for operational risk is estimated at the 99.9th percentile 
(which corresponds to the size of total annual loss that would be exceeded no more frequently 
than once in 1,000 years).  Economic capital is estimated at an even higher percentile of the 
distribution (usually between the 99.95th to 99.98th percentiles).6   
 
Within the AMA framework, the Loss Distribution Approach (LDA) is the most commonly used 
method for estimating an aggregate annual loss distribution with parametric models.  The LDA 
decomposes operational risk exposure into its frequency and severity components (that is, 
distributions of the number and magnitude of losses, respectively).  Most institutions find a 
tractable solution to this empirical task by breaking the problem into a number of sequential 
stages with the ultimate goal being the estimation of the enterprise level aggregate annual loss 
distribution from its underlying components.  
 
Yet even after carefully splitting the problem into distinct components (reviewed below), the 
fundamental statistical challenge remains:  how can banks reliably estimate such a high 
percentile of the enterprise level aggregate annual loss distribution with sufficient precision, 
accuracy, and robustness so that it is actually useful in practice?  To explain by way of example, 
a statistically correct estimate of required capital of $250m, based on LDA, that has a 95% 
confidence window of $200m on either side does not add much value: a range on the estimate of 
required capital from $50m to $450m obviously is not precise enough to use for making actual 
business decisions, but this range actually is more narrow than many in practice.  Even if the 
percentile somehow was estimated with greater precision, if a single, new loss that deviated 
somewhat from the parametric assumptions of the statistical model (not even necessarily a large 
                                                 
4 Some institutions benchmark their AMA capital estimates against estimates generated from the simpler and less 
risk sensitive Basic Indicator Approach or The Standardized Approach. 
5 The Basel II framework for operational risk was first formally proposed by the Basel Committee on Banking 
Supervision in June 1999, with substantial revisions released in January 2001 and April 2003, and was finalized in 
June 2004.  The regulations implementing the Basel II Accord in the United States were finalized in 2007. 
6 Economic capital is defined as the amount of capital required to support an institution’s risk in alignment with the 
institution’s financial strength or creditworthiness.  The enterprise level aggregate annual loss distribution is 
estimated using the institution’s capital quantification system.  The institution then selects a solvency standard 
(probability of default due to operational losses) that is acceptable, often referring to external benchmarks of credit 
risk.  For example, over a one year time horizon, firms with a Moody’s credit rating of Aa have a historical 
probability of default of 0.03%.  To support a solvency standard equivalent to a Moody’s Aa rating, economic 
capital could be determined with a VaR percentile of 99.97%.  See McNeil et al. (2005) for further discussion. 
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loss) threw off the estimate by doubling it from one quarter to the next, and then dropping it by a 
factor of 3 in the following quarter, the estimator clearly is not robust enough to be considered 
reliable for actual business decision making.  Yet this, too, is very typical of the quarterly 
behavior of many banks’ capital estimates at the unit of measure level.7  .  A number of the 
statistical challenges arising from both the LDA framework and its application to the limited 
amount of extant operational loss data were raised as early as 2001, during the initial consultative 
period for the Basel II Accord.8  Research after the Basel II Accord was finalized has begun to 
provide a stronger theoretical and empirical understanding of the limitations of some of the 
widely used estimation methodologies when applied to operational risk capital quantification.9   
 
The inescapable challenge, however, is that the 99.9th percentile is so far out-of-sample, even 
when pooling operational loss data across many institutions, that to make any progress at all the 
practitioner must make very far-reaching, out-of-sample extrapolations using parametric models: 
that is, he or she must fit an assumed statistical distribution as closely as possible to the existing 
data, and then use this “best fit” to presume what the losses look like far out into the right tail of 
the statistical distribution (even though no (or very, very little) observed loss data exists so far 
out into the right tail).  Consequently, the component models that contribute to this estimated 
percentile receive a high level of scrutiny from internal auditors, model validators, and 
regulatory supervisors.  Of the empirical models and methods used in the AMA framework, the 
severity models generally pose much greater modeling challenges, have by far the largest impact 
on the ultimate estimates of economic and regulatory capital, and are an active area of research 
among industry practitioners, academics, and regulators.10 
 
In this paper, we demonstrate how, for a given set of parameter estimates of a severity model, the 
Influence Function (IF) can be used to perform exact sensitivity analysis on capital requirements 
for various current or prospective, and even retrospective changes to the underlying loss data.  In 
other words, the IF can be used to inform us of exactly what the change in capital would be if the 
bank experienced a new loss of, say, $1m, or $10m, or $500m in the next quarter.  The statistical 
theory behind the Influence Function has been richly developed in the Robust Statistics literature 

                                                 
7 A unit of measure is a grouping of loss event data for which a bank estimates a distinct operational risk exposure. 
8 In a May 2001 report on Basel II, Daníelson et al. (2001) argue that operational risk simply cannot be measured 
reliably due to the lack of comprehensive operational loss data.  At that point in time, few financial institutions were 
systematically collecting operational loss data on all business lines and all operational risk event types.  Because of 
this, operational risk analysis made extensive use external loss event from vended database products.  de 
Fontnouvelle et al. (2003) develop empirical models to address the substantial biases that can arise when modeling 
operational risk with such data including:  data capture bias (because only losses beyond a specific threshold are 
recorded) and reporting bias (because only losses above some randomly varying threshold become public 
knowledge or are claimed against an insurance policy).   
9 Using the Operational Riskdata eXchange database (an extensive database of operational losses occurring at 
member institutions), Cope et al. (2009) demonstrate that data sufficiency and the regulatory requirements to 
extrapolate to the 99.9th percentile of the loss distribution are major sources of instability and sensitivity of capital 
estimates.  More recently, Opdyke and Cavallo (2012) demonstrate that the inherent non-robustness of Maximum 
Likelihood Estimation (MLE) is exacerbated by the use of truncated distributions, and that the extrapolations 
required for estimating regulatory and especially economic capital systematically and, in many cases, materially, 
overstate capital requirements due to Jensen’s inequality. 
10 Frachot et al. (2004) demonstrate that the vast majority of variation in capital estimates is due to the variation of 
the estimated severity parameters, as opposed to the variation of the estimated frequency parameter(s). 
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for nearly half a century; only its application to operational risk is relatively new.11  In this 
setting, the IF needs only three inputs to define exact capital sensitivity curves: i) the estimator 
used in the severity model; ii) the values of its parameter estimates; and iii) an assumed forward 
looking frequency.  With these inputs the IF defines a deterministic, non-stochastic mathematical 
formula that exactly describes the impact of data changes (in the form of additional or changed 
losses) on the parameters of the severity distribution.12  Because these parameters directly define 
capital requirements, the IF formula directly determines the exact capital changes caused by 
hypothetical or actual changes in the loss data – hence, the IF provides exact capital sensitivity 
analyses.  Consequently, the IF arms business users of operational risk capital estimates with 
relevant information about potential capital needs and precisely defined risks, as long as they 
carefully align the hypothetical data changes to realistic capital planning and business decisions.   
 
A major benefit for business users lies in the fact that the Influence Function is an exact formula, 
based on analytic derivations: to understand how capital changes under different scenarios, one 
need only use the formula, thus avoiding the need to perform extensive simulations that are often 
resource-intensive, subjectively interpreted, and often inconclusive or inaccurate regarding 
capital outcomes.  Simply put, the IF provides the definitive, exact answer to the question, “How 
will capital requirements change if there is a new loss of $50m in the next quarter?  Or just 
$500k?  Or even $500m?” 
 
Fortunately, the IF has a very wide range of application.  It can be used with any of the 
commonly used severity distributions as well as with virtually any estimator of the severity 
distribution parameters.  We illustrate the use of the Influence Function here with the most 
widely used operational risk severity estimator, the Maximum Likelihood Estimator (MLE).  In 
spite of its known limitations, MLE continues to be most popular amongst practitioners and is 
almost universally accepted by regulatory authorities.  The appeal of MLE for estimating the 
parameters of the severity distribution is its desirable statistical properties when the MLE 
modeling assumptions are satisfied, that is, when loss data is independent and identically 
distributed (“i.i.d.”).13  Under these conditions, MLE estimators are accurate (asymptotically 
unbiased), asymptotically normal, and maximally efficient (precise). 
 
Under an extensive range of hypothetical changes in the loss data, we apply the IF to the MLE 
estimators of the parameters of multiple severity distributions to demonstrate, on both relative 
and absolute bases, the exact impacts of the data changes on the estimated capital requirements.  
These are the Exact Capital Sensitivity Curves mentioned above.  This is extremely valuable 
                                                 
11 Some recent applications of robust statistics to operational risk severity estimation include Opdyke and Cavallo 
(2012), Ruckdeschel and Horbenko (2010), and Horbenko, Ruckdeschel, and Bae (2011).   Older publications 
include Chernobai and Rachev (2006) and Dell’Aquila and Embrechts (2006).   
12 Another way of stating this is that, as an exact formula, the IF introduces no additional estimation error beyond 
what has been estimated already, namely, the severity and frequency parameters. 
13 The i.i.d. assumption describes two important aspects of a data sample.  First, an observed sample of data points is 
independent “when no form of dependence or correlation is identifiable across them” (BCBS 2011, fn. 29).  Second, 
an observed sample of data points is identically distributed (homogeneous) when the data are generated by exactly 
the same data generating process, such as one that follows a parametric probability density function, or “are of the 
same or similar nature under the operational risk profile” (BCBS 2011, fn. 29).  These textbook conditions are 
mathematical conveniences that rarely occur with actual, real-world data, let alone “messy” operational risk loss 
event data.  
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information that is useful in two major ways: first, for capital planning, as they are, by definition, 
exact sensitivity analyses whereby the capital effects of different scenarios, based on 
hypothetical changes to the underlying loss data, can be seen directly.  Scenarios of interest to 
bank management may be prospective, such as assessing the potential capital impact of 
hypothetical "tail" events of differing magnitudes, or retrospective, allowing for exact attribution 
or “but for” analysis to provide insight into the reasons why capital changed the way it did from 
one quarter to another.  Secondly, statistically, the IF and the Capital Curves it generates can 
guide severity estimator choice and development to potentially increase both the robustness and 
efficiency of the capital distribution (as distinct from the distribution of the severity parameter 
estimates), while mitigating material bias via previously unidentified but important statistical 
effects, like Jensen’s inequality (see Opdyke and Cavallo, 2012).  Taken together, the IF and its 
associated Exact Capital Sensitivity Curves not only can suggest major potential enhancements 
to the severity model, but also better inform decision-making and capital planning based on a 
more precisely and accurately defined risk profile. 
 
So the IF can be used 1) as an essential tool to inform estimator choice and development when 
tackling the fundamental statistical problem of obtaining estimates of a very high percentile of 
the loss distribution that are more precise, less biased, and more robust; and 2) directly in the 
capital planning process, once an estimator is selected, to generate corresponding Exact Capital 
Sensitivity Curves.  Opdyke and Cavallo (2012) focus on the former, but in this paper we focus 
on the latter, while noting the many benefits associated with a unified methodological framework 
that relies on the IF for both 1) and 2). 
 
In Section 2, we describe the basic capital estimation problem under LDA, including a discussion 
of the empirical challenges of estimating a severity distribution and operational risk capital from 
historical data.  This is followed by a discussion of the M-Class estimation framework, as MLE 
is an M-Class estimator.  In Section 3, we discuss the Influence Function and its central role in 
the robust statistics framework, with a focus on how the IF provides a widely accepted and well 
established statistical definition of “robustness” (specifically, “B-robustness”).  Here we also 
present the Empirical Influence Function, and analytically derive the Influence Functions of 
MLE estimators of parameters for some of the most commonly used medium- to heavy-tailed 
loss severity distributions, both with and without data truncation.14  In Section 4 we review a 
series of “case studies” to show how the Exact Capital Sensitivity Curves arise in real-world 
situations of relevance to business decision makers.  Section 5 concludes the chapter with a 
summary and a discussion of the implications of the results, as well as suggested related topics 
for future applied research. 
 

2. The Capital Estimation Problem in Operational Risk 
 
The capital estimation problem is generally approached by segmenting risk into suitably 
homogeneous risk classes, applying the LDA to these risk classes, and then aggregating risk to 

                                                 
14 Most institutions collect information on operational losses only above a specified data collection threshold.  The 
most common method of accounting for this threshold is to fit truncated severity distributions to the available loss 
data. 
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the enterprise level.  Typical stages of a modeling process may include the following: 
 

1. Unit of measure definition:  Historical loss data (which may be internal to the bank or 
include external data as well) are partitioned or segmented into non-overlapping and 
homogeneous “units of measure” that share the same basic statistical properties and 
patterns.   
 

2. Frequency estimation:  Empirical models are developed to describe or estimate the 
distribution of annual loss frequency in each unit of measure. 
 

3. Severity estimation:  Empirical models for the severity of losses within each unit of 
measure are developed. 
 

4. Estimation of aggregate annual loss distributions:  By combining the frequency and 
severity components within each unit of measure, the distribution of the annual total 
value of operational losses is computed for each unit of measure. 
 

5. Top-of-house risk aggregation:  The aggregate annual loss distributions for each unit of 
measure are combined to represent the enterprise level aggregate annual loss distribution 
and related capital requirements.  The Basel II framework presumes perfect dependence 
of risk across units of measure as a default assumption, which can be implemented for the 
VaR risk measures currently used by simply summing all the VaR estimates of all the 
units of measure.  A reduction in enterprise level capital can be obtained if an institution 
can successfully demonstrate that the risks of all the units of measure are less than 
perfectly dependent.  This is often accomplished via correlation matrices or copula 
models. 

 

2.1. The Loss Distribution Approach 
 
The Loss Distribution Approach (LDA) is an actuarial modeling technique widely used to 
estimate aggregate loss distributions for many types of risk, including operational risk.  Total 

annual loss in unit of measure i is given by 
1

in

i ij
j

S x
=

= ∑ ,  where ni is the total number of losses in 

the year for unit of measure i. 
 
To estimate the probability distribution of total annual loss amounts, the LDA decomposes the 
distribution of Si into its frequency and severity components.  The application of the LDA within 
unit of measure i requires the following fundamental modeling assumptions: 

• Annual loss frequency (nit) is independently and identically distributed within unit of 
measure i with some probability distribution:  nit ~ Hi(λi) 

• Each of the ni  individual loss severities (xij) in unit of measure i are independently and 
identically distributed with some probability distribution:  xij ~ Fi(θi) with  j = 1,  …, ni 



Operational Risk Capital Estimation and Planning  ©J.D. Opdyke & Alexander Cavallo 
 
 

 Page 8 of 56  

• Loss frequency is independent of loss severity15 
 
Current industry practice is that banks use essentially all available data points for estimating the 
parameters of the severity distributions in each unit of measure.  Some institutions exclude 
certain individual data points when they are not representative of operational risk exposure on a 
current or forward looking basis.  Typically, banking supervisors require a substantial level of 
documentation, justification, and internal governance for the exclusion of historical loss events 
from the estimation samples.16  The level of scrutiny for excluding external losses is 
substantially lower than for excluding internal losses.17 
 
In contrast, the parameters of the frequency distributions often are estimated on subsets of the 
available data, for example, the five most recent years of data.  Internal data quality 
considerations may also affect an institution’s decision on how many years of loss frequency 
data to use in estimating frequency parameters. 
 

2.2. The Setting:  Empirical Challenges to Operational Risk Severity 
Modeling 

 
The very nature of operational loss data makes estimating severity parameters challenging for 
several reasons: 
 

• Limited Historical Data:  Observed samples of historical data are quite limited in sample 
size since systematic collection of operational loss data by banks is a relatively recent 
development.  Sample sizes for the critical low frequency – high severity loss events are 
even smaller.18 
 

                                                 
15 However, Ergashev (2008) notes that this assumption is violated for truncated distributions.  Whether this 
violation is material to the estimation of either severity parameters or capital estimates is not explored. 
16 Both industry practitioners and banking supervisors appear to accept the notion that some external loss events may 
not reflect an institution’s risk profile for a variety of reasons.  Filtering of external data for relevance according to 
business lines, geographic areas, and other salient characteristics is widely accepted.  Scaling models are sometimes 
used to make external losses more representative of an institution’s risk profile.  Banking supervisors also appear to 
be receptive to arguments that specific individual external loss events may be excluded, but banks must typically 
acquire very detailed information in order to make acceptable arguments.  For example, certain types of events are 
“industry” events that occur at multiple institutions in the same general time period, such as the wave of legal 
settlements related to allegations of mutual fund market timing.  An institution that itself incurred one or more such 
losses may be justified in excluding other institutions’ losses (if they can be identified in the external data) since that 
specific industry event is already represented by an internal loss in the bank’s loss database. 
17 There is greater industry range of practice across the different national banking jurisdictions with respect to the 
exclusion of internal loss events from estimation samples.  Some jurisdictions permit wholesale exclusion of losses 
for disposed businesses (i.e. when business units or business lines are no longer part of the institution).  Some 
jurisdictions require more detailed analysis to determine which losses may be excluded (e.g. banking supervisors 
may require the inclusion of loss events related to employment practices, since these policies are typically 
established at a corporate level). 
18 Pooling data from multiple financial institutions in the 2002 Loss Data Collection Exercise, Moscadelli (2004) 
estimates GPD distributions on as few as 42 data points.  Chapelle et al. (2008) estimate GPD distributions with 
sample sizes of only 30 to 50 losses, and other parametric distributions with sample sizes of approximately 200, 700, 
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• Heterogeneity:  Obtaining reasonably large sample sizes for severity modeling 
necessarily requires making the unit of measure more heterogeneous, either by 
incorporating external loss data or by pooling internal loss data across multiple product 
lines, business units, etc.19  Due to this inherent heterogeneity in the loss data, it is highly 
improbable that the critical MLE assumptions of i.i.d. data are satisfied. 
 

• Heavy-tailed Severity Distributions:  Operational risk practitioners have observed that 
parameter estimates for heavy-tailed loss distributions typically are quite unstable and 
can be extremely sensitive to individual data points.  The extreme sensitivity of parameter 
estimates and capital estimates to large losses is well documented, but the comparable 
sensitivity, and sometimes even greater sensitivity, of parameter estimates to small losses 
has been almost completely missed in the literature.20 
 

• Truncated Severity Distributions:  Most institutions collect information on operational 
losses above a specific data collection threshold.  The most common method to account 
for this threshold is to fit truncated severity distributions to the loss data, but truncation 
creates additional computational complexity and is a major source of parameter (and 
capital) instability.  This is due at least in part to the fact that it creates much more heavy-
tailed distributions.  Additionally, for some estimators, such as MLE, truncation induces 
or augments existing covariance between the estimated parameters, which further 
heightens instability and non-robustness in the parameter estimates (see Opdyke and 
Cavallo, 2012). 
 

• Changing Data:  An often underappreciated fact of real-world operational loss event 
databases is that the data itself evolves over time.  Some institutions include specific 
provisions or reserves to account for this, because over time the severity of some losses 
may be adjusted upward or downward to reflect additional information about the event 
(litigation-related events of notable durations are common examples).21  Also, due to the 
inherent application of judgment in interpreting and applying unit-of-measure 
classification schemes, individual loss events can even be reclassified into other business 
lines or event types as additional loss event details are discovered or understood.  As a 

                                                                                                                                                             
and 3,000 losses.  The smaller sizes are in stark contrast to important publications in the literature, both seminal (see 
Embrechts et al., 1997) and directly related to operational risk VaR estimation (see Embrechts et al., 2003) which 
make a very strong case, via “Hill Horror Plots” and similar analyses, for the need for sample sizes much larger to 
even begin to approach stability in parameter estimates. 
19 Heterogeneity of operational loss data has been flagged as a major problem by a number of authors.  Daníelson et 
al. (2001) state “the loss intensity process will be very complicated, depending on numerous economic and business 
related variables” (p. 13).  For example, Cope and Labbi (2008) and Cope (2010) make use of country level 
characteristics and bank gross income to build location-scale models that define more homogeneous units of 
measure, without which, of course, the units of measure would have been (much more) heterogeneous. 
20 Cope (2011) documents the substantial sensitivity of MLE parameter estimates to large losses using a mixture 
approach to induce misspecification in the right tail.  The analysis does not examine the ultimate impact to 
operational risk capital, nor does it examine misspecification in the left tail.  Opdyke and Cavallo (2012) is the only 
paper known to these authors that does all three, and it finds, under certain circumstances, potentially massive 
instability due to left tail misspecification, both in terms of parameter estimation and in terms of capital estimation. 
21 Recent AMA-related guidance states that banks must have a process for updating legal event exposure after it is 
financially recognized on the general ledger until the final settlement amount is established.  See BCBS (2011). 
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result, business users of operational risk capital estimates have a strong need for a well-
defined, theoretically justified, and easily implemented tool to assess potential capital 
needs for certain hypothetical data changes, because in practice, such changes happen all 
the time, even without considering new loss events in each new quarter.   
 

2.3. M-Class Estimation 
 
MLE is amongst the class of M-Class estimators, so called because they generalize “M”aximum 
Likelihood Estimation.  M-Class estimators include a wide range of statistical models for which 
the optimal values of the parameters are determined by computing sums of sample quantities.  
The general form of the estimator (1) is extremely flexible and can accommodate a wide range of 
objective functions, including the MLE approach and various robust estimators. 

( )∑
=Θ∈

=
n

i
iM x

1

,minargˆ θρθ
θ

 (1) 

 
Assuming the regularity conditions commonly assumed when using MLE,22 all M-Class 
estimators are asymptotically normal and consistent (asymptotically unbiased),23 which are very 
useful properties for statistical inference.   
 
Maximum Likelihood Estimation is considered a “classical” approach to parameter estimation 
from a frequentist perspective.  In the Basel II framework, MLE is the typical choice for 
estimating the parameters of severity distributions in operational risk.24  To maintain its desirable 
statistical properties (described below), MLE requires the following assumptions: 
 

A1) Independence:  Individual loss severities are statistically independent from one 
another 

A2) Homogeneity:  Loss severities are identically distributed within a unit of measure 
(perfect homogeneity) 

A3) Correct Model:  The probability model of the severity distribution is correctly 
specified (this is distinct from the model’s parameters, which must be estimated) 

 
Under these restrictive and idealized textbook assumptions, MLE is known to be not only 
asymptotically unbiased (“consistent”) and asymptotically normal, but also asymptotically 
efficient.25  Given an i.i.d. sample of losses ( )1 2, , nx x x and knowledge of the “true” family of 

                                                 
22 A discussion of the regularity conditions required for the application of MLE is included in many statistics and 
econometrics textbooks.  See Greene (2007) for one example.   
23 A summary of the regularity conditions needed for the consistency and asymptotic normality of M-Class 
estimators generally can be found in many textbooks on robust statistics, such as Huber and Ronchetti (2009). 
24 The recent AMA guidance from the Basel Committee acknowledges the recent application of robust statistics in 
operational risk, but refers to Maximum Likelihood Estimation and Probability Weighted Moments as “classical” 
methods.  See BCBS (2011) ¶ 205. 
25 The term “efficient” here is used in the absolute sense, indicating an estimator that achieves the Cramér-Rao lower 
bound – the inverse of the information matrix, or the negative of the expected value of the second-order derivative 
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the probability density function ( )|f x θ (that is, knowledge of the pdf, but not its parameter 

values), the MLE parameter estimates are the values of ˆ
MLEθ that maximize the likelihood 

function, or equivalently, that minimize the objective function ( ),xρ θ . 
 
The MLE estimator is an M-class estimator with ( ) ( ), ln |x f xρ θ θ = −   , so 
 

( ) ( )
1 1

ˆ arg min , arg min ln |
n n

MLE i i
i i

x f x
θ θ

θ ρ θ θ
∈Θ ∈Θ= =

= = −∑ ∑ . (2a) 

 
An equivalent expression is obtained by maximizing the usual log-likelihood function,  

( ) ( ) ( )1 2
1

ˆ | , , ln | ln |
n

n i
i

l x x x L x f xθ θ θ
=

   = =   ∑ , 

so 

( )1 2
ˆˆ arg max | , ,MLE nl x x x

θ
θ θ

∈Θ
 =   . (2b)  

 
An objective assessment of real-world operational risk data must acknowledge that each one of 
the key assumptions required for MLE estimators to retain their desirable statistical properties 
(consistency, asymptotic efficiency, and asymptotic normality) is unlikely to hold in practice. 
 

• Independence (A1):  If the severity of operational losses has both deterministic and 
stochastic components, then operational losses by definition fail to be independent due to 
common determinants.  For example, systematic differences in loss severity may be 
explained by event characteristics such as geography, legal system, client segment, time 
period effects, etc.26  The impact of potential failures of the independence assumption is 
beyond the scope of this chapter, but is known to be nontrivial (see van Belle, 2002, pp.7-
11). 
 

• Identically distributed (A2):  Because a unit of measure typically pools internal loss 
events from multiple business processes that undoubtedly have different data generating 
processes, achieving perfect homogeneity, as required by MLE, is virtually impossible.  
The pooling of internal and external loss data for severity modeling further augments 
heterogeneity.  Each institution’s operational risk profile is unique and is moderated by 
its specific characteristics – the specific combination of products and service offerings, 
technology, policies, internal controls, culture, risk appetite, scale of operation, 
governance, and other factors.  Understanding the behavior of severity estimates and 

                                                                                                                                                             
of the log-likelihood function.  This is the minimal variance achievable by an estimator.  See Greene (2007) for 
more details.  The term “efficient” also can be used in a relative sense, when one estimator is more efficient – that is, 
all else equal, it achieves a smaller variance (typically assuming unbiasedness) – than another. 
26 Cope et al. (2011) find systematic variation in loss severity by region, country characteristics, and certain 
macroeconomic variables. 
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capital estimates when confronted with both modest and extreme deviations from 
perfectly homogeneous data is the central focus of this chapter. 
 

• Correctly specified model (A3):  MLE has desirable asymptotic statistical properties only 
when the correct form of the loss distribution is “known” and correctly specified.  Under 
idealized i.i.d. data conditions, MLE remains consistent, asymptotically efficient, and 
asymptotically normal, but if there is the possibility (probability) that some losses do not 
come from the statistical distribution assumed by the model, then MLE can perform 
poorly, losing most or all of these desirable statistical qualities.  This has been shown in 
the literature (see Dupuis, 1999, and Opdyke and Cavallo, 2012) and is consistent with 
findings presented herein in the following sections. 
 

3. The Influence Function and the Robust Statistics Framework 
 
Robust Statistics is a general approach to estimation that explicitly recognizes and accounts for 
the fact that all statistical models are by necessity idealized and simplified approximations of 
complex realities.  As a result, a key objective of the robust statistics framework is to bound or 
limit the influence on parameter estimates of a small to moderate number of data points in the 
sample which happen to deviate from the assumed statistical model.  Since actual operational 
loss data samples generated by real-world processes do not exactly follow mathematically 
convenient textbook assumptions (e.g. all data points are not perfectly i.i.d., and rarely, if ever, 
exactly follow parametric distributions), this framework would appear to be well suited for 
operational risk severity modeling. 
 
The Influence Function is central to the Robust Statistics framework, the theory behind which is 
very well developed and has been in use for almost half a century.  Some of the seminal 
theoretical results that established the field of robust statistics include Tukey (1960), Huber 
(1964), and Hampel (1968).  Classic textbooks on robust statistics such as Huber (1981) and 
Hampel et al. (1986) have been widely used for more than 30 years.  The dramatic increases in 
computing power over the last 20 years also have enabled the theoretical development and 
practical use of computationally intensive methods for computing robust statistics.27  Robust 
statistics have been used widely in many different applications, including the analysis of extreme 
values arising from both natural phenomena and financial outcomes.28  These applications of 
robust statistics use many of the medium- to heavy-tailed loss distributions of greatest relevance 
in operational risk.  A unified approach to comparing the relative merits of robust statistics and 
classical statistics, both in terms of parameter estimation, directly, and capital estimation, 
ultimately, can be made with the Influence Function.  This is the focus of Opdyke and Cavallo 
(2012), but this chapter focuses on the application of the IF to MLE-based estimates of capital to 
better inform business decision making. 
 

                                                 
27 See Huber and Ronchetti (2009) for a discussion of these more recent advances. 
28 A detailed summary table of applications of robust statistics across many disciplines is available from the authors 
upon request.  
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3.1. The Influence Function 
 
The Influence Function is an essential tool from the robust statistics framework that allows 
researchers to analytically determine and describe the sensitivity of parameter estimates to 
arbitrary deviations from the assumed statistical model.  The Influence Function can be thought 
of as indicating the impact of a marginal deviation at severity amount x on the parameter 
estimates.  Simply put, it answers the question:  “How does the parameter estimate change when 
the data sample changes with a new loss of amount = $x?” 
 
One requirement of the IF is that the estimator being assessed is expressed as a statistical 

functional, that is, as a function of the assumed distribution of the model: ( )( ) ( ),T F y T Fθ =
, 

where ( ),F y θ  is the assumed severity distribution.  Fortunately, almost all relevant estimators 
can be expressed as statistical functionals.  Common examples are the first and second moments 
of a known distribution ( ),F y θ as 

( )( ) ( ) ( )1 1 , , ,m T F y ydF y yf y dyθ θ θ= = =∫ ∫  
and 

( )( ) ( ) ( )2 2
2 2 , , ,m T F y y dF y y f y dyθ θ θ= = =∫ ∫  

respectively. 
 
The Influence Function is an analytic formula for assessing this impact of an infinitesimal 
deviation from the assumed distribution occurring at a severity amount of x:   

( )
( ){ } ( ) ( ) ( )

0 0

1
; , lim lim

xT F T F T F T F
IF x T F ε

ε ε

ε εδ

ε ε→ →

 − + −  −
 = =  
     

 (3) 

where 
• ( ) ( ),F y Fθ =  is the assumed severity distribution,   

• ( )( ) ( ),T F y T Fθ =  is the statistical functional for the specified estimator under the 
assumed distribution, 

• x is the location of the deviation, 
• ε is the fraction of data that is deviating, 
• xδ is the cumulative distribution function of the Dirac delta function xD , a probability 

measure that puts mass 1 at the point x: 

 ( ) 1     if 
0 otherwisex

y xD y = =  
    and  ( ) 1     if 

0 otherwisex
y xyδ ≥ =  

 
,  

• ( ){ } ( )1 xT F T Fεε εδ− + =  is simply the estimator evaluated with contamination.29 

                                                 
29 The term “statistical contamination” does not indicate a problem with data quality per se, but instead reflects the 
realistic possibility (probability) that most of the data follows the assumed distribution, but some fraction of the data 
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The Influence Function has a simple and direct interpretation as the difference between the 
parameter estimates when the data sample is “contaminated,” that is, having distribution Fε  
which is “contaminated” by a new loss amount x, and the parameter estimates under the assumed 
distribution, F (with no “contamination”); this difference is then normalized by the amount of 
contamination, ε.  This framework allows us to compare the exact asymptotic behavior of a 
selected estimator across a range of arbitrary data deviations, or even make comparisons across 
multiple estimators, when faced with less-than-ideal, non-textbook data, regardless of the nature 
of the deviating data (i.e. regardless of the distribution from which the “contamination” or 
“arbitrary deviation” came).  By systematically varying the location of the arbitrary deviation (x) 
the impact of data contamination from any distribution can be assessed.  The Influence Function 
is an asymptotic result because it is the limiting value as the amount of deviating data approaches 
zero (or equivalently, as the sample size increases without bound since ε is a function of the 
number of contaminated data points).30  The Influence Function is an extremely powerful tool 
with many uses and serves as the foundation for our analytic approach to capital sensitivity 
analysis using hypothetical scenarios based on changes in loss data.31 
 

3.2. The Empirical Influence Function 
 
Often used in conjunction with the IF, the Empirical Influence Function (EIF) is simply the finite 
sample approximation of the IF, that is, the IF applied to the empirical distribution of the data 
sample at hand.  Arbitrary deviations, x, are used in the same way to trace the EIF as a function 
of x, and since the empirical distribution is used, typically ε = 1/n.  So to define the EIF, we use 
equation (3) with the empirical cumulative distribution function, so ( ) ( )ˆF F= : 
 

( ) ( ){ } ( ) ( ) ( )
0 0

ˆ ˆ ˆ ˆ1
ˆ; , lim lim

xT F T F T F T F
EIF x T F

ε

ε ε

ε εδ

ε ε→ →

   − + − −
   = =   
      

 (4) 

 
where all terms agree with (3) except that practical application dictates that ε = 1/n  (so ε → 0 
still as n → ∞) 
 
Because EIF converges to IF quickly, that is, even with relatively small sample sizes, EIF is a  

                                                                                                                                                             
comes from a different distribution (this portion is called “contaminated”).    In the remainder of this paper, we use 
the more neutral term “arbitrary deviation” synonymously with “statistical contamination.” 
30 The conditions required for the existence of the Influence Function are detailed in Hampel et al. (1986), and 
Huber (1977).  The Influence Function is a special case of a Gâteaux derivative and it requires even weaker 
conditions for existence than a Gâteaux derivative (see Hampel et al. 1986, and Huber 1977).  The IF can be defined 
for any of the commonly used operational risk severity distributions. 
31 See Hampel et al. (1986) for an extensive and detailed description of the many uses of the influence function. 
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good practical tool for validating IF derivations, or for approximating IF for other reasons (we 
show examples of this in practice later in the paper, and this is one of the reasons it is good 
practice to implement both EIF and IF simultaneously).  
 

3.3. B-Robustness 
 
The entire point of robust statistics is to obtain reliable estimates of a parametric model even 
when the assumed model is only approximately correct, specifically, when some of the data may 
come from a different underlying distribution than the bulk of the data.  The definitions of the 
Influence Function suggest a simple and useful definition of “robustness” to such deviating data 
points.  An estimator is said to be “B-robust” for the distribution F ( ) if the Influence Function is 
bounded (meaning it does not diverge toward ±∞) over the domain of F ( ).  If the Influence 
Function is not bounded, then the estimator is not “B-Robust” for a particular parameter of 
distribution F ( ).32  When the Influence Function is unbounded, on the other hand, then an 
arbitrary deviant data point can result in meaningless or practically unusable parameter 
estimates, as when parameter estimates become arbitrarily large or small (i.e. divergent toward 
±∞).  This type of extreme sensitivity of parameter estimates is precisely the type of “bias” that 
can result from heterogeneous data. 
 
A comparison of the influence functions of two estimators of central tendency, the mean and the 
median, is useful for illustrating the concept of B-Robustness.  Assume the data follows a 
standard normal distribution, F = Φ.  The statistical functional for the mean 
is ( ) ( ) ( )T F ydF y yf y dy= =∫ ∫ , so to derive the IF of the mean, we have:  
  

( ) ( ) ( ) ( ){ } ( )
0 0

1
; , lim lim

xT F T FT F T F
IF x T F ε

ε ε

ε εδ

ε ε→ →

 − + − −
 = = = 
     

 

 
( ){ }( ) ( ) ( ) ( ) ( ) ( )

0 0

1 1
lim lim

x xyd y yd y yd y yd y yd y

ε ε

ε εδ ε ε δ

ε ε→ →

   − Φ + − Φ − Φ + − Φ
   = = =
      

∫ ∫ ∫ ∫ ∫
 

 

            
0

lim
x

ε

ε
ε→

 =   
 because ( ) 0ud uΦ =∫ , so  

 
( ); ,IF x T F x=           (5) 

 
From the mathematical derivation above, it is evident that the Influence Function for the mean of 
a standard normal random variable is unbounded.  As the point of arbitrary deviation (x) 
increases to +∞, so does the Influence Function, and as a result, the mean becomes arbitrarily 

                                                 
32 Note that the “B” in “B-robust” signifies limiting the “B”ias of an estimator, because if the estimator itself is 
bounded, so too must be its bias (if any).   
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large and meaningless.  Similarly, as the point of deviation decreases to –∞, the Influence 
Function does as well, and the mean becomes arbitrarily small and meaningless. 
 
Figure 1 displays the Influence Functions of the mean and median of a standard normal 
distribution.33  Consistent with the mathematical derivation above, the Influence Function for the 
mean has a positive slope of 1 and increases without bound in both directions.  In contrast, the 
Influence Function for the median is bounded and never tends toward ±∞.   
 
Graph 1:  Influence Functions of the Mean and Median 
 

 
 
As expected, the non-robustness and B-robustness of the mean and median, respectively, hold 
even when the F( ) is not the standard normal distribution, as shown below for the mean. 
 

( )
( ) ( ) ( ) ( )

0 0

1
; , lim lim

xydF y yd y ydF y xIF x T F x
ε ε

ε ε δ ε εµ µ
ε ε→ →

 − + − −  = = = −     

∫ ∫ ∫
 

where μ is the mean, so 
  

( ); ,IF x T F x µ= −  
 
As should now be apparent from the above, estimators that are not B-robust run the very real risk 
of generating capital estimates that, due to unanticipated, unmeasured, or unmeasurable 
heterogeneity (even if it is relatively small), are extremely “biased” relative to that which would 
be generated by the assumed severity distribution of the model, and potentially grossly inflated.  
                                                 
33 See Hampel et al. (1986) for a derivation of the influence function of the median. 
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The IF is the analytic tool to use to identify such conditions.  In the next section, we present the 
formula for the Influence Function for M-class estimators generally and MLE specifically.  We 
use this to derive and present the MLE Influence Functions of parameters of specific and widely 
used severity distributions in operational risk.  The capital estimates based on these estimators 
are then generated and assessed, with one criteria for evaluation being whether they are B-robust, 
and how this robustness, or lack thereof, impacts capital estimation from the standpoint of 
practical implementation. 
 

3.4. The Influence Function for M-Class Estimators 
 
M-class estimators generally are defined as any estimator 

( )1, ,n n nT T X X=  whose optimized objective function satisfies ( )
1

, 0
n

i n
i

X Tϕ
=

=∑ , or 

equivalently, ( )
1

, min!
n

i n
i nT

X Tρ
=

=∑ , where ( ) ( ),
,

x
x

ρ θ
ϕ θ

θ
∂

=
∂  is the derivative of ρ which is 

defined over ℘× Θ , the sample space and parameter space, respectively. 
 
The first order conditions for this optimization problem are  

( ) ( ),
, 0

x
x

ρ θ
ϕ θ

θ
∂

= =
∂  

 
The second order conditions are satisfied when the Hessian of the objective function 

( ) ( ),
,

x
x θ

θ

ϕ θ
ϕ θ

θ
∂

′ =
∂  is positive-definite.34  

 
Hampel et al. (1986) show that, conveniently, the Influence Function for all M-class estimators is 
 

( ) ( )

( ) ( )

,
; ,

,
b

a

x
IF x T

y dF y

θ
θ

θ

ϕ θ
θ

ϕ θ
=

′−∫
 (6) 

 
where a and b are the endpoints of support for the distribution.  When multiple parameters are 
being estimated, as with most operational risk severity distributions, the possibility of (non-zero) 
parameter covariance must be taken into account with the matrix form of (6) as shown in (7) 
below: 

                                                 
34 This is the second partial derivative test for more than one variable (in this case, more than one parameter).  The 
Hessian is positive-definite if all eigenvalues are positive in which case f ( ) attains a local minimum at x, the point at 
which it is evaluated. 
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( ) ( )
( ) ( )

( ) ( )

1 1

1

22 2

1

1 1 2

1 2

  
; ,

 

b b

a a
b b

a a

dF y dF y
IF x T A

dF y dF y

θ θ

θ
θ θ

θθ θ

ϕ ϕ
ϕθ θ

θ θ ϕ ϕϕ ϕ
θ θ

−

−

∂ ∂ 
− −   ∂ ∂ = =   ∂ ∂  − − 

∂ ∂  

∫ ∫

∫ ∫
   (7) 

 
(see Stefanski and Boos, 2000). 
 

3.5. The Influence Function for MLE Estimators 
 
MLE is an M-Class estimator with objective function 
 

( ) ( ), ln ,x f xρ θ θ = −     
 
In this case, the derivative of the objective function with respect to the parameters is simply the 
negative of the score function 
 

( ) ( ) ( ) ( ), ,
, ,

x f x
x f xθ

ρ θ θ
ϕ θ θ

θθ
∂ ∂

= = −
∂∂    

 
and the Hessian is  

( ) ( ) ( )
( ) ( ) ( )

( )

22

22

22

, ,
,

, ,
,

,

f x f x
f x

x x
x

f x
θ

θ

θ θ
θ

θ θϕ θ ρ θ
ϕ θ

θ θ θ

 ∂ ∂
− ⋅ +  ∂ ∂∂ ∂   ′ = = =

∂ ∂   
 

 
So for the specific case of MLE, the Influence Function shown in (6) and (7) is simply the score 
function normalized by its variance (the negative of the expected value of the second order 
derivative, or the Fisher Information).  And as noted above, in this setting it is important to note 
and account for potential covariance of the severity distribution’s parameters by evaluating the 
cross-partial derivative terms for each parameter in (7).  This is shown below to sometimes have 
very large, and even counterintuitive effects on the estimators under common conditions.  The IF 
is the tool that can establish such effects, definitively, as the analytic behavior of the estimators, 
and not as an uncertain function of simulations that can be misspecified or subjectively 
interpreted, with inferences resting largely on the specific and narrow ranges of input parameter 
values.  This is one of the tremendous advantages of using IF: it is an analytic derivation 
describing the exact behavior of the estimator under any degree of arbitrary deviation from the 
assumed severity distribution.  IF is not only more accurate than any simulation could be, it 
makes behavioral simulations moot because it is the formulaic answer to the question, “exactly 
how does the parameter estimate change when loss event, x, is added to my sample of loss data?”  
And regarding the possible “B-robustness” of the MLE estimator(s) for a specific distribution, 
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this can be determined, based on the above, simply by determining whether the score function is 
bounded, as long as it is monotonic over the relevant domain (see Huber, 1981).   
 

3.6. The Influence Function for MLE Estimators of Truncated Severity 
Distributions 

 
Most banks record losses only above a certain threshold H (typically H = $5,000, $10,000, or 
€20,000 for the case of some external consortium data), so data on smaller losses generally are 
not available.  The reason for this is that many business processes at a financial institution 
generate large numbers of operational loss events with de minimis impact that do not threaten 
bank solvency.  It is much more efficient for banks to gather operational loss data on the smaller 
set of operational loss events that have material impact to earnings, may threaten bank solvency, 
may generate reputational risk, and/or may be preventable with appropriate changes in bank 
policies and procedures. 
 
When data is collected subject to a data collection threshold, the most widely accepted and 
utilized method to account for incomplete observation of the data sample is to assume that losses 
below the threshold follow the same parametric loss distribution, f ( ), as those above it, whereby 
the severity distribution becomes g( ), a (left) truncated distribution, with pdf and cdf below. 
 

( ) ( )
( )
,

, ,
1 ,

f x
g x H

F H
θ

θ
θ

=
−     and    ( ) ( )

( )
1 ,

, , 1
1 ,

F x
G x H

F H
θ

θ
θ

−
= −

−   

 
Under truncation, the terms of the Influence Function for the MLE estimator now become 
 

( ) ( )( ) ( )
( ) ( )( ) ( )( ),

, ln , ln ln , ln 1 ,
1 ,

f x
x g x f x F H

F H
θ

ρ θ θ θ θ
θ

 
= − = − = − + −  − 

  

 

( ) ( )
( )

( )

( )

( )

, ,
,

, ,
, 1 ,

f x F H
x

x H
f x F Hθ

θ θ
ρ θ θ θϕ θ

θ θ θ

∂ ∂
∂ ∂ ∂= = − −

∂ −   

 
and 

( ) ( ) ( )2

2

, , ,
, ,

x H x
x H θ

θ

ϕ θ ρ θ
ϕ θ

θ θ
∂ ∂

′ = = =
∂ ∂  

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 22 2

2 2

2 2

, , , ,
, 1 ,

, 1 ,

f x f x F H F H
f x F H

f x F H

θ θ θ θ
θ θ

θ θ θ θ

θ θ

   ∂ ∂ ∂ ∂
 − ⋅ + − ⋅ − −    ∂ ∂ ∂ ∂      = +

   −   
.  
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When the severity distribution has only one parameter, the general form of the Influence 
Function is: 

( ); ,IF x Tθ θ =

( )

( )

( )

( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 22 2

2 2

2

, ,

, 1 ,

, , , ,
, 1 ,

1
1 , , 1 ,

b

a

f x F H

f x F H

f y f y F H F H
f y F H

dy
F H f y F H

θ θ
θ θ

θ θ

θ θ θ θ
θ θ

θ θ θ θ
θ θ θ

∂ ∂
∂ ∂− −

−
=

   ∂ ∂ ∂ ∂
 − ⋅ + ⋅ −     ∂ ∂ ∂ ∂      − +

−  − 
∫

 (8) 

 
where a and b define the endpoints of support, which are now H and (for all relevant severity 
distributions) +∞, respectively.  When the severity distribution has more than one parameter, the 
Influence Function has the general form: 
 

( ) ( )
( ) ( )

( ) ( )

1 1

1

22 2

1

1 1 2

1 2

  
; ,

 

b b

a a
b b

a a

dG y dG y
IF x T A

dG y dG y

θ θ

θ
θ θ

θθ θ

ϕ ϕ
ϕθ θ

θ θ ϕ ϕϕ ϕ
θ θ

−

−

 ∂ ∂
− −   ∂ ∂ = =   ∂ ∂  − − 

∂ ∂  

∫ ∫

∫ ∫
. (9) 

 
The structure of the multi-parameter (typically two-parameter) version of the IF does not change 
from equation (7) except that the differential, of course, corresponds with the cdf of the truncated 
severity distribution, G( ). 
 
Comparing (6) and (8) we can see that the numerator of the Influence Function of a truncated 
distribution simply is a shift of the score function for the non-truncated distribution, and the 
magnitude of the shift depends only on the threshold H and the parameter values θ, but not on 
the location of the arbitrary deviation x.  The denominator of the Influence Function for a 
truncated distribution differs substantially from that of its non-truncated distribution.  The 
expected value of the Hessian is computed over the truncated domain (H, ∞), multiplied by a 
truncation constant, and added to an additional constant term in each second derivative.  As is the 
case for the φ function, the constant terms depend only on the threshold H and the parameter 
values θ, but not on the location of the arbitrary deviation x.  These changes in the Fisher 
information matrix (relative to the non-truncated case) fundamentally alter the correlation 
structure of the parameters of the distribution, introducing dependence, or magnifying it if 
already present before truncation. 
 
Even when analyzing data collected with a data collection threshold, the MLE Influence 
Function is an analytically determined function given an assumed distribution and parameter 
values.  With it, no simulation is required to assess the behavior of MLE parameter estimators 
because this remains a definitive, analytic result.  All that is required to perform the analysis is 
the calculation of the derivatives and integration in (6) and (7) or (8) and (9), and these 
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derivatives, of course, differ for each different severity distribution.  So for each severity 
distribution, one must calculate 
 
 
 
 
and under truncation, also calculate 
 
 
 
 
(the derivatives of the cumulative distribution function with respect to the parameters can be 
computed using Leibniz’s Rule).  Once this is done, (7) and (9) apply to all non-truncated and 
truncated severity distributions, respectively, which is very convenient as it makes calculations 
and testing for multiple severity distributions considerably easier.  
 

3.7. The Influence Function for LogNormal, LogGamma, and GPD 
Distributions, With and Without Truncation 

 
Using the analytic formulas for the Influence Function under MLE estimation in (7) and (9), we 
summarize below the key mathematical results to obtain the IF for the parameters of the 
LogNormal, LogGamma, and GPD distributions when there is no truncation.  The same results 
under truncation can be found in the Appendix.  Complete derivations for all IFs can be found in 
Opdyke and Cavallo (2012).  Below we also present graphs, for all six truncated and non-
truncated cases, of all the IFs and the EIFs so the behavior of the former, and the convergence of 
the latter, is clear.   
 
LogNormal: 
 
The pdf and cdf of the LogNormal distribution are defined as: 
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So via (7) the Influence Function of the MLE parameters of the LogNormal severity is 
 

( ) ( )

( )

( )( )
( )

( )( )
2 2

1 2 222

3

ln ln
  0; , ln0  / 2 ln1

2

x x
IF x T A xxθ θ

µ µ
σ σθ θ ϕ µ σσ µ

σσ σ

−

 −  −    −  = = =  − −  − −    −    

  (10) 

Importantly, note that the zero cross derivatives in ( )A θ indicate parameter independence in x, 
which is discussed further below. 
 
This result (10) for the LogNormal is a well known.  Graphs of the IF for the MLE parameters of 
the LogNormal severity (with µ = 10.95 and σ = 1.75), compared with their EIF counterparts, are 
shown below.  
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Graphs 2a-2e:  IF v. EIF of LogNormal (µ = 10.95 and σ = 1.75)  
       for MLE Parameter Estimates by Arbitrary Deviation, x   
 

 

  

 
 
First note, as mentioned above, the quick convergence of EIF to IF even for n not very large 
(here, n = 250).  Secondly, note the asymptotic behavior of both µ and σ as 0x +→ : according 
to (10), µ → −∞ and σ → +∞ .  But note that σ → +∞ at a much faster rate because of the 
squared term in the numerator of its IF, so this would indicate a capital estimate  → +∞ as 

0x +→ , that is, a larger and larger capital estimate caused by smaller and smaller arbitrary 
deviations in the left tail.  This is an important, counter-intuitive result shown previously only in 
Opdyke and Cavallo (2012), and which we shall explore more in the next section when we 
present the exact capital sensitivity curves. 
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LogGamma: 
 
We present the same derivations below for the LogGamma: 
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So via (7) the Influence Function of the MLE parameters of the LogGamma severity is 
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  −     

    (11) 

 
Importantly, note that the non-zero cross derivatives in ( )A θ indicate parameter dependence in x, 
the effects of which are discussed below. 
 
Graphs of the IF for the MLE parameters of the LogGamma severity (with a = 35.5 and b = 
3.25), compared with their EIF counterparts, are shown below.  
 
 
 
 
                                                 
35 A common definition of the LogGamma distributed random variable, z, is ( )expz q= , where q is a random 

variate that follows the Gamma distribution with endpoints of support 0 q< < ∞ .  This inconveniently makes the 
endpoints of support for the LogGamma 1 z< < ∞ .  Conventional practice, when using this definition, is to 
subtract the value 1 (one) ex post so that the endpoints of support for the LogGamma become 0 z< < ∞ . 
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Graphs 3a-3d: IF v. EIF of LogGamma (a = 35.5 and b = 3.25)  
     for MLE Parameter Estimates by Arbitrary Deviation, x   
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Graphs 3e-3h: IF Y-Scaled v. IF of LogGamma (a = 35.5 and b = 3.25)  
    for MLE Parameter Estimates by Arbitrary Deviation, x   
 

 
 

 

 
 

 
 
Note again the quick, if imperfect, convergence of EIF to IF even for n not very large (n = 250).  
Secondly, note the asymptotic behavior of both a and b as 1x +→ : a → −∞ and b → −∞ , 
which we can see in the graphs above where the y-axis is not scaled.  But note that while smaller 
a  indicates smaller quantiles for the LogGamma, smaller b indicates larger quantiles for the 
LogGamma.  What does this mean for capital estimation (which is essentially a high quantile 
estimate of the severity distribution)?  The effect of the b term in (11) ends up dominating that of 
the a term because of the relative size of the constants in the numerators of both terms, and 
estimated capital  as 1x +→ +∞ → ; that is, like the LogNormal, a larger and larger capital 
estimate results from a smaller and smaller arbitrary deviation in the left tail.  Again, a 
counterintuitive result, and as we shall see in the next section, a very large one. 
 
Generalized Pareto Distribution: 
 
For the GPD severity, we have: 

( )
1 1

1; , 1 xf x
ε

ε β ε
β β

 − −   
= + 

 
 and ( )

1

; , 1 1 xF x
ε

ε β ε
β

 −   
= − + 

 
 

for  0 ;  0 ;  assuming 0 (which is appropriate in this setting)x β ε≤ < ∞ < >  
 

a

b
N

on
-S

ca
le

d 
Y

-a
xi

s 
N

on
-S

ca
le

d 
Y

-a
xi

s 



Operational Risk Capital Estimation and Planning  ©J.D. Opdyke & Alexander Cavallo 
 
 

 Page 27 of 56  

Inserting the derivatives of ( ) ( ) ( ) ( ) ( )2 2 2
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     (12) 

 
Via (7), the Influence Function of the MLE parameters of the GPD severity –  
 

( ) ( ) 1; ,IF x T Aθ θθ θ ϕ−
=  – is solved numerically.  However, note that Smith (1987),36 for the 

GPD specifically, was able to conveniently simplify the Fisher Information to yield 

( ) ( )1
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1   
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ξ β
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β β
− + − 

= +  −          (13) 

 
(Ruckdeschel and Horbenko (2010) later re-present this result in the operational risk setting).  
This gives the exact same result, as shown in the graphs below, as the numerical implementation 
of (12) above, and provides further independent validation of the more general framework 
presented herein (which, of course, can be used with all commonly used severity distributions). 
 

                                                 
36 Smith (1987) was the earliest example of this result that we were able to find in the literature. 
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Importantly, note that the non-zero cross derivatives in (12), as well as in (13), indicate 
parameter dependence in x, the effects of which are discussed below. 
 
Graphs of the IF for the MLE parameters of the GPD severity (with ξ = 0.875 and β = 57,500), 
compared with their EIF counterparts, are shown below.  
 
 
Graphs 4a-4d: IF v. EIF of GPD (ξ = 0.875 and β = 57,500)  
     for MLE Parameter Estimates by Arbitrary Deviation, x   
 

 
 

 
 

 
 

 
 

Again note the quick, if imperfect, convergence of EIF to IF even for n not very large (n = 250).  
Secondly, note that as x → +∞ apparently ξ → +∞ and β → −∞ , which will undoubtedly be 
reflected in the exact capital sensitivity curves in the following sections. 
 
The mathematical results for the IFs of the LogNormal, LogGamma, and GPD severities under 
truncation all are presented in the Appendix.  Their corresponding graphs, for thresholds (H) of  
$0, $10k and $25k, are presented below, with IFs presented side-by-side with EIFs. 
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Truncated LogNormal: 
 
For the Truncated LogNormal, we have: 
 
Graphs 5a-5d:  IF v. EIF of Truncated LogNormal (µ = 10.95 and σ = 1.75)  
      for MLE Parameter Estimates by Arbitrary Deviation, x   
 

 
 

 
 

 
 

 
 

Again, EIF converges to IF even for n not very large (n = 250).  Secondly, note that the effects of 
a data collection threshold on parameter estimation can be unexpected, and even counterintuitive, 
both in the magnitude of the effect, and its direction.  For the LogNormal, truncation causes not 
only a change in the shape, but also a change in the direction of μ(x) as x increases.  Many would 
call this unexpected, if not counter-intuitive: when arbitrary deviations increase, what many 
consider the location parameter, μ, actually decreases.37  Note that this is not true for σ, which 
still increases as x increases, so truncation induces negative covariance between the parameters.  
Many have thought this finding, when it shows up in simulations, to be numeric instability in the 
convergence algorithms used to obtain MLE estimators, but as the IF definitively shows, this is 
the right result.  And of course, neither the definition of the LogNormal density, nor that of the 
truncated LogNormal density, prohibits negative values for μ.  This is probably the source, at 
least in part, of the extreme sensitivity reported in the literature of MLE parameter estimates of 
the truncated LogNormal. 
 

                                                 
37 In fact, exp(μ) is the scale parameter of the LogNormal. 
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This is but one example of the ways in which the IF can provide definitive answers to difficult 
statistical questions about which simulation-based approaches can provide only speculation and 
inconclusive musing. 
 
 
Truncated LogGamma: 
 
For the Truncated LogGamma, we have: 
 
Graphs 6a-6d:  IF v. EIF of Truncated LogGamma (a = 35.5 and b = 3.25)  
      for MLE Parameter Estimates by Arbitrary Deviation, x  
 

 
 

 
 

 
 

 
 

Note again the quick, if imperfect convergence of EIF to IF even for n not very large (n = 250).  
Also note that the extreme asymptotic behavior of both parameters as 1x +→ is mitigated 
somewhat by truncation, just as with the LogNormal.  However, both parameters’ diverge much 
more quickly to negative infinity as x → +∞ , and this more rapid divergence is also like the 
LogNormal (but in the opposite direction for μ).  So while in the case of the LogNormal 
truncation caused parameter dependence, in the case of the LogGamma it augmented 
dependence that was already there, as shown in the non-zero cross derivative terms of ( )A θ  in 
(11) above. 
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Truncated GPD: 
 
For the GPD, we have: 
 
Graphs 7a-7d: IF v. EIF of Truncated GPD (ξ = 0.875 and β = 57,500) 
     for MLE Parameter Estimates by Arbitrary Deviation, x   
 

 
 

 
 

 
 

 
 

EIF again converges to IF fairly quickly, if imperfectly, even for n not very large (n = 250).  
Unlike the LogNormal and the LogGamma, truncation does not mitigate parameter variance as 

0x +→ (perhaps because there was somewhat less to begin with), but like the other two severity 
distributions it does cause much more rapid divergence to negative infinity for β as x → +∞ , 
while ξ mostly just shifts to the right, which is consistent with its role as the tail index.  So the 
negative parameter covariance in x that already was present in the non-truncated case, as seen in 
(12) and (13), remains in the truncated case, as seen in (A.3) in the Appendix. 
 

3.8. Capital Estimation 
 
The entire point of the statistical exercise of estimating severity distribution parameters is to 
estimate a capital requirement.  As the convolution of the frequency and severity distributions, 
the aggregate loss distribution, for which we must obtain a VaR, has no general closed form 
solution, so large scale Monte Carlo simulations are the gold standard for obtaining the “true” 
capital requirement for a given set of frequency and severity distribution parameters.  However, a 
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number of less computationally intensive methods exist, the most convenient of which is the 
mean adjusted Single Loss Approximation (SLA) of Degen (2010).38  Given a desired level of 
statistical confidence (α), an estimate of forward-looking annual loss frequency (λ), an assumed 
severity distribution (F( )), and values for the parameters of the severity distribution (θ), capital 
requirements are approximately given by 
 

1 11C Fα
α λµ

λ
− − ≈ − + 

   where (14) 

      = single year loss quantile (0.999 for regulatory capital; 0.9997 for economic capital) 
      is the average number of losses occurring within one year (the frequency estimate) 
      is the mean of the estimated severity distribution 
 
This provides us with a very accurate approximation of the VaR of the aggregate loss 
distribution without having to simulate it.39  Note that from (14) we can see that the VaR of the 
aggregate loss distribution is essentially just a high quantile of the severity distribution on a 
single loss (the first term) with a mean adjustment that typically is small (the second term) 
relative to the first term (in the remainder of the paper, our use of “SLA” refers to the mean 
adjusted SLA of (14)).  And for the case of severity distributions with infinite mean, say, a GPD 
severity with 1ξ ≥ , Degen derives an SLA approximation that is not dependent upon the mean 
of the distribution: 
 
 
 
                                           (15) 

where   if  1 ξ< < ∞  and 1cξ = if 1ξ =  
 
So the capital estimates, based on (14) and (15), are functions of the severity distribution 
parameter estimates θ (whether via MLE or some other estimator) which define ( )1 ,F x θ− .  
Since the IFs define the exact behavior of the parameter estimator, and the parameter estimator 
defines the exact behavior of capital estimates, all as a function of new losses, the Exact Capital 
Sensitivity Curve can thus be drawn as a function of new losses, based directly on the IF.  We 
now have a way to perform exact sensitivity analyses (no simulations required) based on 
hypothetical new losses: simply evaluate the IF at the value of the new loss, then multiply IF by 
ε (typically 1/n) and subtract the parameter estimate based on the original sample to get the value 
of the new parameter estimate.  Then use the new parameter estimate to obtain the new capital 
                                                 
38 Degen’s (2010) fomula is supported by analytic derivations, whereas that of Böcker and Sprittulla (2006), which 
is commonly used, is based on empirical observation (although both are very similar). 
39 Capital estimates based on fully simulated aggregate loss distributions, with both frequency and severity 
parameters simulated (which is the gold standard here) are compared to SLA approximations in Opdyke and Cavallo 
(2012) and the later are shown to be very accurate for practical purposes. 
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requirement (this is shown below in (16)).  This provides a capital estimate with no additional 
estimation error (beyond that of the original frequency and severity parameter estimation), and is 
described in more detail below. 
 

4. Using the Influence Function to Inform Business Decisions 
 
In this section we demonstrate how the Influence Function is directly used to define, under a 
wide range of scenarios, exact capital requirements for business decision makers.  The basic 
framework begins with a set of baseline parameters for the loss severity distribution ( )0,F x θ  
using a particular estimator on a sample of size n.  The mean-adjusted single loss approximation 
can be used to generate a baseline estimate of capital given the relevant forward looking annual 
loss frequency (λ) and the required percentile of the aggregate annual loss distribution (e.g. α = 
99.9% for regulatory capital and, typically, α = 99.95% to 99.98% for economic capital). 
 
The exact asymptotic behavior of the MLE estimator when faced with potential deviating data, 
i.e. a new loss event, x, is given by the analytic formulae presented above in Section 3.7 and in 
the Appendix.  The exact capital impact of the new loss event can be assessed by using these 
analytic formulae in combination with the specific information for the hypothetical data change 
scenario.  For example, for a data change scenario in which an additional loss is to be included in 
the sample, the Influence Function describes the impact of adding an infinitesimal fraction of 
deviating data at severity amount x, so we obtain the new parameter estimates via: 
 

( ) ( ) ( ); ,T F IF x T F T Fε ε≈ ⋅ +   where 1 nε =  is used in practice   (16) 
 
This new parameter estimate is then used in the SLA formula to generate a new estimate of 
capital, and the difference between this new capital and the baseline capital is the change in 
capital resulting from the new (or dropped) loss event. 
 
The examples that follow represent some of the real-world business situations whose changing 
capital requirements can be informed, directly and exactly, by the Influence Function via the 
above.  The specific values for the parameters of the severity distributions and the hypothetical 
loss events in each scenario have been modified to protect confidential and proprietary 
information.  The examples apply the Influence Function approach to samples of 250 loss events 
from LogNormal, LogGamma, and GPD distributions, with data collection thresholds of $0, 
$10,000, and $25,000.  By examining the resulting Exact Capital Sensitivity Curves we can see 
how deviations from the assumed distributions differentially affect the capital estimates based on 
different severity distributions, and (very) differentially affect capital estimates over different 
ranges of deviating loss values.  A summary of the baseline parameters from the samples and the 
resulting capital estimates based on the SLA (12), assuming an annual loss frequency of λ = 25, 
are presented in Table 1. 
 
 
 



Operational Risk Capital Estimation and Planning  ©J.D. Opdyke & Alexander Cavallo 
 
 
 

 Page 34 of 56  
 

Table 1:  Baseline Parameter and Capital Estimates 
 

 
 
A very important finding to remember when considering the following capital results is MLE’s 
apparent lack of B-robustness.  Although we have left mathematical proofs for the less obvious 
cases for another paper, based on the derivations and results shown in Section 3.7 and the 
Appendix, all evidence points to non-robustness of MLE for all of the parameters of all of the 
severity distributions examined.  More importantly, however, is that this lack of robustness is 
reflected in the behavior of the capital estimates shown in the next section.  Across the entire 
domain of relevant loss events, this MLE non-robustness directly impacts capital estimates in 
very material, sometimes unexpected, and even completely counter-intuitive ways. 
 

4.1. Case Study 1:  New right tail loss of different possible severity 
amounts 

 
Operational losses associated with litigation are a common occurrence in the banking industry.  
The existence of potential litigation brings an element of uncertainty into the capital planning 
process on the part of management.  In some cases, management may request information on the 
potential capital requirements assuming alternative outcomes for the litigation. 
 
Suppose that the institution faces a legal claim for an alleged operational loss related to the 
Advisory Services event subtype of CPBP (Clients, Products, and Business Practices), and that 
on the advice of counsel, it is determined that a loss reserve of $100 million be established in 
accordance with U.S. GAAP accounting rules (so based on available information, a loss of $100 
million is probable and reasonably estimable).  Suppose that this loss is recognized after the 
regular quarterly cycle of capital modeling and reporting has completed.  Although the best 
estimate of the potential loss is $100 million at the time the loss is financially recognized, 
suppose that it is determined that the loss could be as low as $15 million if the litigation were to 
resolve favorably and could be as high as $200 million in the case of very adverse discovery or 
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motion rulings.  Management could very reasonably request an assessment of the potential 
capital implications of the three alternative loss scenarios. 
 
The loss scenarios are the addition of a single individual loss with severity of $15, $100, or $200 
million.  This can be evaluated within the Influence Function framework via (16), or using the 
EIF by augmenting the baseline data sample with the additional hypothetical loss and re-
estimating the severity parameters.  An updated set of capital estimates is then calculated making 
use of the revised severity parameter estimates.  If this process is repeated over a range of 
relevant loss severities, then the capital curves as in Figures 8a-i, 9a-i, and 10a-i can be plotted.  
Table 2 summarizes overall dollar impact of the hypothetical loss scenarios for Case 1 (addition 
of a right tail loss). 
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Table 2:  Dollar Impact of an Additional Hypothetical Loss in the Right Tail 
 

 
 
The results above make clear that the sensitivity of capital to a new large loss is greatly impacted 
by the assumed distribution of losses.  The more heavy-tailed the loss distribution (i.e. having a 
larger data collection threshold within a distributional family or for LogGamma and GPD 
compared to the LogNormal), the greater the impact of an additional loss in the right tail.  
Moreover, the impact relative to the total loss in the loss sample can be extremely large, often 10, 
20, and even more than 30 times the size of all previous losses put together!  This brings into 
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question the plausibility of the LDA framework, or at the very least, the use of MLE as a severity 
estimator, as the severity distributions above are widely used in this setting.  
  

4.2. Case Study 2:  New left tail loss 
 
As financial institutions increase the business use of operational risk quantification models, 
operational risk practitioners are increasingly asked to explain to management why capital has 
changed from the prior period estimate.  Many business users of operational risk capital 
estimates reasonably believe that capital estimates should be stable from quarter to quarter when 
the institution’s risk profile is stable; should increase when the institution’s risk profile increases 
(e.g. due to an increase in the scale of operations through acquisition, or due to the realization of 
losses in the right tail of the distribution); and should decrease when the institution’s risk profile 
decreases (e.g. due to a decrease in loss frequency).  Operational risk practitioners note that 
satisfactory attribution analysis of capital changes for the business audience can be quite elusive, 
because even though mathematical or statistical explanations can be provided, the resulting 
capital impacts can be quite unexpected to all constituents, both business users and operational 
risk quantitative experts.  This case study demonstrates how the influence function can be used 
as a statistical tool to explain changes in capital, especially when such changes are counter-
intuitive, and simulation approaches, unlike the IF, provide no definitive answers as to why. 
 
Suppose that an institution has observed a total of 250 loss events within the unit of measure and 
that only one additional loss is expected to enter the loss database in the next period.  Suppose 
that this individual event happened to be very close to the data collection threshold, specifically, 
the data collection threshold plus $1,000 (which is generally below the 5th percentile of each of 
the loss distributions, but certainly not extremely unlikely). 
 
The loss scenarios are the addition of a single individual loss with severity of $1,000, $11,000, or 
$26,000 (for H = $0, $10,000, and $25,000, respectively).  As in Case 1, this can be studied 
within the Influence Function framework by using (16) or augmenting the baseline data sample 
with the additional hypothetical loss and re-estimating the severity parameters.  An updated set 
of capital estimates is then calculated making use of the revised severity parameter estimates.   
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Table 3:  Dollar Impact of an Additional Hypothetical Loss in the Left Tail 
 

 
 
As Table 3 shows, in Case 2 the story is less the change in capital relative to the baseline and 
more the change relative to the size of the new loss.  These results are quite dramatic: a $4.5m 
increase in economic capital results from a $1,000 loss under a LogNormal model; a $21m 
increase in regulatory capital results from a $11,000 loss under a Truncated LogGamma 
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(H=$10k) model;  and a $133.7m increase in economic capital results from a $26,000 loss under 
a Truncated GPD (H=$25k) model.  These capital increases appear extremely disproportionate 
with the new loss amount, and yet they are completely consistent with the IFs derived above in 
Section 3.7 and in the Appendix.  For example, recall the IF of the MLE LogNormal parameters 
in equation (10): 
 

( )
( )

( )( )2 2

ln
; , ln

2

x
IF x T xθ

µ
θ µ σ

σ

 −
 

= − − 
 
 

        (10) 

 
As seen in (10), and as Graphs 2a-e showed, when 0x +→ , σ → +∞  much faster than µ → −∞ , 
because ( )ln x , which becomes a very large negative number as 0x +→ , is squared in IFσ , but 
not IFµ .  So σ will increase without bound, causing the entire LogNormal severity – all of its 
percentiles – to increase without bound.  This causes the capital estimate based on (14) to 
increase without bound, because (14) is a direct function of the specified percentile of the 
LogNormal severity.  So if a new loss was even smaller than $1,000, say $10, capital would 
increase even more – increases of $19,019,123 and $33,292,687, in fact, for regulatory and 
economic capital, respectively.  The same increases under the LogGamma, which is 
characterized by an even more extreme asymptotic behavior as 1x +→ , would be $590,889,232 
and $1,469,816,763, respectively.  Of course these numbers are absurd, but they are inescapable 
mathematical consequences of using MLE estimators.  And while few, if any banks would 
include $10 losses in their severity models, every single one, by definition, will be conducting 
severity modeling on loss event datasets with losses within a few thousand dollars of their 
respective data collection thresholds.  Truncation does mitigate to some degree the extreme 
asymptotic behavior of the MLE estimators and the capital estimates based on them, but as 
shown in Table 3 above, it certainly does not eliminate it altogether. 
 
These extreme results are actually shown in the full Exact Capital Sensitivity Curves in Graphs 
8a-i, 9a-i, and 10a-i, but they are difficult to see because of the large scales of the axes.  Below 
are the same graphs, for changes in capital, with expanded scales for the LogNormal as an 
example, to highlight the counterintuitive and dramatic affect that small left-tail losses have on 
capital estimation. 
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Graphs 11a-11d: Exact Capital Sensitivity Curves (MLE), Scaled and Not Scaled, based on 
         LogNormal (µ = 10.95 and σ = 1.75), by Arbitrary Deviation, x   
 
Complete LogNormal ECSC   Scaled Axes LogNormal ECSC

 
 

 
 

 
 

 
 

Given Table 3 and Graphs 11a-11d, it is no wonder that most banks relying on MLE-based LDA 
experience tremendous quarter-to-quarter instability in their capital requirements.  All it takes is 
a few losses near, say, the $10,000 threshold to add many tens of millions of dollars to estimates 
of required capital – and this is a “correct” result, based on MLE estimators! 
  

4.3. Case Study 3:  Removal of a current loss 
 
In practice, operational loss event databases evolve over time and financial institutions estimate 
capital requirements using the state of the database at a particular point in time.  Depending on 
an institution’s data recording policies and internal governance, individual loss events may 
appear in the loss event database only for a period of time.  Many institutions have a thorough 
data review and approval process for entries to the loss event database but include events in 
“draft” status in the modeling dataset while the review and approval process is underway.  A loss 
event may be removed from the loss event database for any of number of potential reasons, such 
as:  

• Change to loss severity – the severity of an operational loss may exceed the data 
collection threshold at the time the record was first entered to the loss event database, but 
may be found to fall below the threshold during the review process. 

$0 Change in Capital 
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• Reclassification of loss event – the precise determination of whether a particular event is 
an operational risk, or represents some other type of risk such as credit risk, business risk, 
or strategic risk can take some time to complete.  Modeling datasets include only losses 
due to operational risk, and such events are removed when determined to represent a 
different risk class.  

 
This type of data change can affect individual loss events across the entire range of the loss 
distribution.   
 
Suppose that an institution has observed a total of 250 loss events within the unit of measure and 
that one event in draft status will be removed from the loss event database in the subsequent 
quarter.  Suppose that this individual event is either a left tail event (very close to the data 
collection threshold) or a right tail event.  Since these hypothetical data change scenarios reflect 
the removal of a loss, we simply change the sign of the usual Influence Function to capture the 
impact of removing data with arbitrary loss amount x.  The resulting capital curves are the same 
as Graphs 8a-i, 9a-i, and 10a-i, but the change in capital is multiplied by negative one.  Only one 
illustrative example – that of the IF of the MLE estimators of the Truncated LogGamma – is 
shown below for purposes of brevity. 
 
Graphs 12a-12b: Exact Capital Sensitivity Curves (MLE), Loss Added / Dropped, based on 
             Truncated LogGamma (a = 35.5, b = 3.25, H=$10k), by Arbitrary Deviation, x 
 
         Loss Added        Loss Dropped 

 
 

 

4.4. Case Study 4:  Reclassification of an individual loss 
 
Since operational loss event databases evolve over time, any number of important data fields 
may change as more information is learned about an individual loss event.  Any number of issues 
may result in the reclassification of a loss in such a way that it no longer belongs in a particular 
unit of measure.  Some examples include: 
 

• Reclassification of loss event type – when a particular operational loss is first financially 
recognized, the details of the loss pathway may be unclear.  For example, a business unit 
may recognize an operational loss for an event believing it to result from a type of 
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improper business practice (a subclass of Basel loss event type CPBP) when subsequent 
review identifies the loss as a transaction error event (a subclass of EDPM (Execution 
Delivery and Process Management)). 
 

• Reclassification of business line – individual business units or subgroups may dispute 
which business is responsible for a particular operational loss.  Subsequent internal 
discussions may result in a shared allocation of a loss event or even complete 
reassignment from one business to another. 
 

• Treatment of corporate events – in some cases, an operational loss initially may be 
recognized by a particular business unit, but upon further internal review, may be 
reassigned to the corporation as a whole. 
 

Such reclassifications can affect individual loss events across the entire range of the loss 
distribution.  For the unit of measure that receives the reclassified loss event, the Influence 
Function analysis follows the form of Case 1 or Case 2.  For the unit of measure from which the 
loss event is removed, the Influence Function analysis follows the form of Case 3.  The 
aggregate effect is calculated when the VaR’s are combined across all units of measure. 
 

4.5. Case Study 5:  Revision of a current loss 
 
As previously explained, there are a variety of reasons why the characteristics of an operational 
loss event may change over time in the database.  The examples above have focused on the 
capital impacts of adding or removing data points from the estimation sample, but it is quite 
common for the severity of individual loss events to change during the current period.  This can 
occur for events that are in “draft” status, or due to updates of certain components of the loss 
amount (such as transaction fees, taxes, penalties, attorney fees, etc.).  Suppose the original loss 
severity is an amount x0, and the revised loss amount is x1.  To accommodate this type of data 
change in the Influence Function framework, (16) is simply applied using x0 and a new capital 
requirement is calculated; and then (16) is applied a second time using x1 and another capital 
requirement is calculated.  The difference between these two capital requirements is the 
difference in the expected capital effect. 
 
Suppose that an institution has observed a total of 250 loss events within the unit of measure and 
that, under a GPD (ξ = 0.875 and β = 57,500) severity model, a $1 million loss event has its 
severity revised to $10 million.  For such data changes, the resulting change in expected change 
in capital is just the difference between the two points on the capital curve; that is, the change in 
capital associated with the $1m loss subtracted from the change in capital associated with the 
$10m loss, as described above.  This is shown on Graph 13 below.  Regulatory capital would 
have increased by $52.1m due to the $1m loss, but it changed by $253.5m because the loss was 
really $10m, for a difference of about $201m.  Economic capital would have increased by 
$166.3m but it actually changed by $834.9m for a difference of about $668.5m. 
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Graph 13: Exact Capital Sensitivity Curves (MLE), Current Loss Changed, based on  
         GPD (ξ = 0.875 and β = 57,500), by Arbitrary Deviation, x 
 

  
 

4.6. Case Study 6:  A Retrospective Exact Attribution/ “But For” Analyses 
 
Due in part to the quarter to quarter instability in capital estimation, bank management may 
request an attribution analysis in an attempt to understand why capital requirements changed 
from the previous period.  This is especially true when no major new losses were recorded and 
the bank’s risk profile did not change in any notable way, but nonetheless, a dramatic movement 
in estimated required capital is observed (Case 2 is one way this can happen). 
 
Suppose that an institution has observed a total of 250 loss events within the unit of measure and 
that three losses were recorded in the previous quarter.  Management could reasonably ask what 
capital requirements would have been “but for” loss #2.  This is simply Case 3 above, where the 
loss dataset used is the one that existed at the time of the quarter in question, and the dropped 
loss is loss #2.  Or management could ask, “What would capital requirements have been if only 
loss #1, or only loss #2, or only loss #3 occurred?”  This is simply Case 1 or 2, applied to each 
loss separately, and the loss dataset used is the one that existed at the time of the quarter in 
question excluding the other two losses.  The three resulting capital estimates can then be 
compared to provide some measure of the contribution of each to the overall change in capital.  
The effects of each could be offsetting, or in the same direction, all augmenting the overall 
change in capital, but either way such an analysis would identify whether, for example, one small 

$669m 

$201m 
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left tail loss event was driving 99% of the change in capital; or whether a loss of, say, about 
$220,000 actually had no effect on capital whatsoever, as shown in Graph 11d above. 
 
This type of “but for” exact sensitivity analysis is particularly helpful in explaining the surprising 
capital response to a cluster losses of similar severity that are very near the data collection 
threshold, which is not an uncommon occurrence.  When a bank’s internal constituents (such as 
senior management or other business users of operational risk capital estimates) or external 
constituents (regulatory supervisors) find quarter to quarter capital changes to be “out of 
proportion” to the underlying data changes (e.g. Case 2 above), there may be calls for 
independent validation of the results by the bank’s internal audit group or the bank’s model 
validation group  The Influence Function and its associated Exact Capital Sensitivity Curves, 
however, can make immediately apparent the sources of the “out of proportion” effects, and 
demonstrate definitively and absolutely how capital estimates using MLE-based severity 
parameter estimates can very easily display unexpected, material, and even “counter-intuitive” 
capital requirements. 
 

5. Conclusions 
 
Given the well documented and extensive empirical challenges of operational risk loss data and 
the methodological challenges inherent in the AMA framework (specifically, estimating very 
high percentiles of the aggregate loss distribution), reliable estimation of both economic and 
regulatory capital without bias, with acceptable precision, and with reasonable robustness 
remains a very formidable exercise. In this chapter, we demonstrated how the Influence Function 
can be used in this effort as a definitive, analytic tool for two essential purposes: a) to inform the 
development and choice of severity estimators, which unarguably remain the main drivers of 
capital estimation in the Loss Distribution Approach framework; and b) to perform direct capital 
planning, once an estimator has been selected, that permits the exact determination of capital 
needs under alternative hypothetical changes to the loss data used in severity modeling.   
       
For the former objective, we demonstrated how the Influence Function can very effectively 
highlight the failure of the most widely used estimator (namely, MLE) to provide robust, 
reliable, and stable capital estimates under a wide range of commonly encountered conditions.  
But our main focus in this chapter has been on the latter objective.  The main advantage of the IF 
for capital planning lies in the fact that it is an analytically derived, deterministic formula.  As 
such, it is the superior alternative, when assessing the behavior of capital estimates under varying 
conditions, to simulation-based approaches that are often resource-intensive, arguably subjective, 
and often inconclusive as they are unable to definitively confirm or invalidate counter-intuitive 
results.  The IF literally provides the definitive answer to the question, “If my bank is subjected 
to a new $10m loss, or a $50m loss, or even a $200m loss, what will be the exact effect on my 
capital requirements?”  As a relatively straightforward formula, the IF provides this exact answer 
with no additional estimation error beyond that of the already estimated severity and frequency 
parameters.   
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The Influence Function is readily programmed in most software systems for statistical or 
mathematical modeling, and in fact this was done to provide the results presented herein.  We 
provide the blueprint for doing this by presenting the derivations for the Influence Functions of 
the Maximum Likelihood Estimators for the parameters of some of the most commonly used loss 
distributions, namely, the LogNormal, LogGamma, and GPD distributions.  We also provide the 
derivations for each of these distributions when they are truncated on the left, which is the most 
common and accepted method for dealing with loss data recorded subject to a data collection 
threshold.  In addition, we describe how the Empirical Influence Function (EIF) can be used as a 
very simple yet accurate approximation of the asymptotic Influence Function.  It is good practice 
to use the IF and the EIF simultaneously, to both know definitively the behavior of the estimator 
over the entire domain of possible loss events, as well as to have a useful and easily implemented 
verification of the more involved calculations required for some IFs. 
 
Finally, we illustrated the practical use of the Influence Function for capital planning by using its 
results to generate Exact Capital Sensitivity Curves.  These demonstrate the definitive, exact 
capital impacts under six realistic data-change scenarios that might arise within a financial 
institution.  Through these scenarios, we demonstrate the inherent instability of capital estimates 
using the LDA (Loss Distribution Approach) with MLE-estimated severity parameters.  
Unfortunately, MLE’s non-robustness directly translates into non-robustness in its capital 
estimates.  The instability of MLE-based capital estimates is sometimes very dramatic and 
worse, occurs under unexpected conditions (e.g. new, small left-tail losses) and in counter-
intuitive ways, increasing dramatically and without bound as the severity of a new loss actually 
decreases dramatically.  This behavior is exactly the opposite of the business requirements for 
operational risk capital estimates:  stability, reliability, robustness, and precision.  Given the 
potentially material changes in capital that can result from changes to the underlying data using 
the LDA/MLE method, it may be prudent for operational risk practitioners to inform 
management and business users of operational risk capital estimates about the range of potential 
capital outcomes for different data change scenarios.  Management and other business users need 
a better understanding of how capital requirements under LDA/MLE may be impacted by data 
changes, as capital instability may negatively impact medium to long term strategic plans.  And 
we believe there is no more effective tool to communicate this than the Influence Function. 
 
Regarding next steps, as described above the IF can be used to assess the behavior of virtually 
any estimator, applied to any of the commonly used severity distributions in operational risk 
modeling.  Alternatives to MLE should be sought out and/or developed.  In fact, Opdyke and 
Cavallo (2012) present initial results of similar tests on a widely used B-robust estimator, the 
OBRE (Optimally Bias-Robust Estimator).40   Preliminary results of OBRE-based capital 
estimates show a respectable mitigation of MLE’s extreme sensitivity vis-à-vis new, small, left-
tail loss events.  However, under some conditions, OBRE-based capital estimates can exhibit 
what is arguably too much robustness on the other extreme, with relatively flat capital 
requirements over large ranges of very large new losses.  OBRE’s robustness tuning parameter 
may provide an effective method for getting around this possible limitation, and this is currently 
                                                 
40 OBRE is a B-robust estimator that is essentially a constrained MLE.  As such it preserves efficiency under data-
change conditions consistent with the presumed severity distribution, but is resistant to extreme data-change 
conditions inconsistent with the presumed severity distribution. 
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being researched.  Regardless of the estimators ultimately used, given the depth of the challenges 
in estimating operational risk capital (both empirical and methodological), and the inherent 
limitations of the LDA framework, it is unlikely that any estimator will serve as a panacea under 
all possible severity distributions and all possible data conditions and all possible new or revised 
loss scenarios, providing universally reasonable capital estimates and a capital distribution that is 
robust, unbiased, and reasonably precise.  However, we have demonstrated that an absolutely 
essential tool in this effort that will aid in estimator development and choice, and especially in 
direct capital planning, under the complete domain of data-change conditions, any estimator, and 
any severity distribution, is the Influence Function. 
 
 
 
 
 
 
APPENDIX:   
Influence Functions of LogNormal, LogGamma, and GPD 
Parameters Under Truncation 
 
 
Truncated LogNormal: 
 
The Truncated LogNormal distribution is defined as: 
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             (A.1) 
 
So via (9), the Influence Function of the MLE parameters of the Truncated LogNormal severity – 

( ) ( ) 1; ,IF x T Aθ θθ θ ϕ−
=  – is computed numerically. 

 
As seen in the graphs in section 3.7, note that the non-zero cross derivatives in ( )A θ  above 
introduces parameter dependence in x, which dramatically changes the behavior of the 
parameters and the resulting capital estimates as a function of x. 
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Truncated LogGamma: 
 
For the Truncated LogGamma, we have: 
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where f () and F() are the pdf and cdf of the LogGamma (see section 3.7 above). 
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and into the psi function yields 
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So via (9), the Influence Function of the MLE parameters of the Truncated LogGamma severity 
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=  – is computed numerically. 

 
As seen in the graphs in section 3.7, note that the non-zero cross derivatives in ( )A θ  above 
augments parameter dependence in x, which changes the behavior of the parameters and the 
resulting capital estimates as a function of x. 
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where f () and F() are the pdf and cdf of the GPD (see section 3.7 above). 
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and into the psi function yields 
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  (A.3) 

 
So via (9), the Influence Function of the MLE parameters of the Truncated GPD severity – 

( ) ( ) 1; ,IF x T Aθ θθ θ ϕ−
=  – is computed numerically.  As seen in the graphs in section 3.7, note 

that the non-zero cross derivatives in ( )A θ  above indicates parameter independence in x, as 
existed in the non-truncated case. 
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