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Disclaimer 
The views presented in this presentation are the views of the sole author, 
J.D. Opdyke, and not necessarily the views of GE Capital.  Any results 
presented herein are based on publicly available sources of information. 
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I. Extreme OpRisk Losses 

Operational Risk 
 Basel II/III 
  Advanced Measurement Approach 
   Risk Measurement & Capital Quantification 
    Loss Distribution Approach 
     Frequency Distribution 

    Severity Distribution* (by far the main driver of the 
                           aggregate loss distribution) 

 

* For purposes of this presentation, potential dependence between the frequency and severity distributions is ignored. See Ergashev (2008) and 
Chernobai, Rachev, and Fabozzi (2007). 
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I. Extreme OpRisk Losses 
• The (Compound) Aggregate Loss Distribution 

  

Under the Loss Distribution Approach, by far the most widely implemented of the 
Advanced Measurement Approaches (see BCBS, 2004), operational risk capital is 
based on the Aggregate Loss Distribution (ALD). 

• The ALD is the convolution of two estimated loss distributions: the frequency 
distribution, representing the number of operational risk loss events that can take 
place during a given timeframe (typically a year), and the severity distribution, 
representing the size of these loss events. 

• Regulatory Capital (RCap) is the estimated 99.9 Value-at-Risk (VaR) of the ALD: in 
other words, the quantile ($ amount) associated with the 99.9%tile of the ALD. 

• Operational Risk Loss Event data is separated into exhaustive and (generally) 
mutually exclusive cells, or Units of Measure (UoM’s), defined so that the loss 
distributions associated with each are as homogenous as possible (i.e. all coming 
from one frequency and one severity distribution, or close).  Often the Business Lines, 
Event Types, or some combination of both define a financial institution’s UoM’s. 

• The 99.9%tile of each UoM is estimated.  Because losses at all the 99.9%tiles do not 
occur in perfect lockstep, they should not simply be added to obtain RCap at the 
enterprise level: dependence structure across the UoM’s is estimated, and the 
decrease in Enterprise Level Capital (relative to a simple sum) that results from this 
diversification benefit typically is substantial (decreases of 25-50% are not 
uncommon; see RMA, 2011; OR&R, 2009; and Haubenstock & Hardin, 2003). 
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For a given UoM: 
 

DCT = 10k 

Estimated Severity PDF – Truncated LogNormal (µ=10, σ=2.8, H=10k) 

Estimated Frequency PMF – Poisson (annual λ=25) 

Convolution to 
combine frequency 
and severity into 
ALD 
(in practice, rarely a 
closed form solution 
… but for the VaR 
there are good and 
widely accepted 
analytical 
approximations to 
avoid extensive 
simulation)  

Aggregate Loss Distribution (ALD) 

Regulatory Capital 
= VaR at 99.9%tile 

I. Extreme OpRisk Losses 
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i. Excessive Capital Variability,and 
ii. Inflated/Large Capital Size 
 
are the Two Fundamental Challenges facing AMA 
Operational Risk Capital Estimation under a Loss 
Distribution Approach. 

II. Only 2 Fundamental Problems 
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III. Variability of Capital 
Excessive Variability in the Operational Risk Capital Estimate 

i. This subsumes almost all issues related to “Model Robustness”, “Model 
(In)Stability” etc. (because if this cannot be mitigated, no other mitigation 
efforts related to “robustness” or “stability” will work). 

ii. Simply put, AMA Operational Risk Capital Estimates generated under a 
Loss Distribution Approach simply are not precise enough to be useful.  
When capital of $500M is associated with (95%) confidence intervals 
ranging (optimistically) from $50M to $1,500M, we can put little 
confidence in decisions based on them.  

iii. This EXCESSIVE VARIABILITY is a function of five things: 
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III. Variability of Capital 
Excessive Variability in the Operational Risk Capital Estimate 

iii. This EXCESSIVE VARIABILITY is a function of six things: 
a. data paucity and heterogeneity 
b. the EXCESSIVELY high severity percentile that must be estimated 

based on the 99.9%tile of the Aggregate Loss Distribution 
c. All relevant severities are heavy-tailed 
d. High Probability, Low-Severity Loss Events  

(Yes, you read this right) 
e. “behavioral convexity” of VaR as a function of severity parameter 

estimates 
f. Systemically Upward Capital Bias (inflation) due to an essential 

discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA) 
 

“old” 

“new” 



 
© J.D. Opdyke 

10  
3/31/2015  

© J.D. Opdyke 

III. Variability of Capital 
Table 1:  
RCE vs. LDA-MLE for Truncated LogNormal Severity (µ = 10.7, σ = 2.385, H=$10k)* 
[see Opdyke (2014) for complete results] 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $700 $847   $1,338 $1,678 

True Capital $670 $670 $1,267 $1,267 

Bias  
(Mean - True) $30 $177 $71 $411 

Bias % 4.5% 26.4% 5.6% 32.4% 

RMSE* $469 $665   $1,003 $1,521 

STDDev* $468 $641 $1,000 $1,464 
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III. Variability of Capital 
Table 2:  
RCE vs. LDA-MLE for GPD Severity (ξ = 0.875, θ = 47,500, H=$0k)*   
[see Opdyke (2014) for complete results] 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $396 $640 $1,016 $2,123 

True Capital $391 $391 $1,106 $1,106 

Bias  
(Mean - True) $5 $249 $24 $1,016 

Bias % 1.2% 63.7% 2.2% 91.9% 

RMSE* $466 $870 $1,594 $3,514 

STDDev* $466 $834 $1,594 $3,363 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

a. data paucity and heterogeneity:  
 
unfortunately, increasing sample size will only marginally improve 
precision in the capital estimate (see Shevchenko, 2011), and 
OpRisk Loss event data always will be relatively heterogeneous no 
matter how well we define UoMs.  OpRisk loss events are by their 
nature very diverse.  The smaller we make UoMs, the more 
homogenous they are, but then we lose statistical power (precision) 
in our capital estimates.  This is an absolutely unavoidable tradeoff 
between homogeneity and statistical power. 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

a. data paucity and heterogeneity:  
 
 
 

MYTH: If we have a large enough sample size of loss events, we can get 
reasonably precise capital estimates. 
 

REALITY: Even under idealized, textbook loss event data (i.i.d. data), we 
would have to have 50,000 to 100,000 years of loss events to even 
approach reasonably precise capital estimates.  Larger sample 
sizes, per se, will only very marginally improve precision in the 
capital estimate. 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

b. the EXCESSIVELY high severity percentile that must be 
estimated based on the 99.9%tile of the Aggregate Loss Distribution 
 
Take Degen’s (2010) widely used Single Loss Approximation as a 
heuristic. 
 
                                        and 
 
 
so this is essentially an estimate of an extremely high quantile of the 
severity distribution, because the 99.9%tile VaR of the Aggregate 
Loss Distribution (α = 0.999) corresponds to a MUCH HIGHER %tile 
of the severity distribution.  For example, if λ = 30, then 
 
 
 
 
so a 99.9%tile of ALD is a 99.9967%tile of the severity! 
 
 

1 11C Fα
α λµ

λ
− − ≈ − + 

 
1 11F α λµ

λ
− − − >> 

 

11 0.999967α
λ
− − = 

 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

b. the EXCESSIVELY high severity percentile that must be 
estimated based on the 99.9%tile of the Aggregate Loss Distribution 
 
so a 99.9%tile of ALD is a 99.9967%tile of the severity! 
 
The higher the %tile, the greater the variability in the estimation of 
that %tile. 
 
Intuitively, imagine taking one end of a long 2x6 and shaking it hard: 
you’ll see very little “wobble” (variation) in the middle of the board.   
 
Now imagine watching the END of the 2x6 as we’re shaking it: the 
“wobble” will be considerably larger. 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

b. the EXCESSIVELY high severity percentile that must be 
estimated based on the 99.9%tile of the Aggregate Loss Distribution 
 
so a 99.9%tile of ALD is a 99.9967%tile of the severity! 
 
This is analogous to estimating two %tiles of the Aggregate Loss 
Distribution based on samples.  Every time we “shake” the board we 
are drawing another sample from the data generating mechanism.  
If we try to mark where the midpoint of the long 2x6 is, i.e. the 
50%tile, we can do this pretty accurately because the 2x6 is not 
bouncing around as much in the middle.  But if we try to mark where 
the 99.9%tile is at the END of the long board, this is much harder 
because the end is bouncing around so much more. 
 
AND note that this variation in the estimate of the %tile will increase 
nonlinearly as the %tile increases. 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

b. the EXCESSIVELY high severity percentile that must be 
estimated based on the 99.9%tile of the Aggregate Loss Distribution 
 
 

MYTH: We are (only) estimating the 99.9%tile of the Aggregate Loss 
Distribution. 
 

REALITY: We are actually estimating the 99.9967+%tile of the severity 
distribution.  And percentiles of 99.999%tile and higher are not 
uncommon.  This is often two orders of magnitude larger than the 
99.9%tile, making this what many statisticians would call an ill-
posed problem, ESPECIALLY under data conditions that are far 
from ideal (i.e. far from independent and identically distributed, or 
i.i.d.). 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

c. All relevant severities are Heavy-Tailed 
 
 
Severity distributions that are not at least fairly heavy-tailed are not 
going to pass regulatory muster. 
 
When estimating the same high %tiles, those of heavier-tailed 
severity distributions often are associated with greater variability vs. 
those associated with lighter-tailed distributions. 
 
However, even though truncation unambiguously makes severity 
tails heavier, its affect on capital variability is to mitigate it somewhat  
(as shown in the next section). 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

d. High Probability, Low-Severity Loss Events  
(Yes, you read this right) 
 
For almost all severity estimators used in this space, maximum 
likelihood being by far the most common (see RMA, 2013), 
excessive quarter-to-quarter variability in the capital estimate is 
NOT driven by Low Probability, High Severity losses.  It is driven by 
High Probability, Low Severity losses. 
 
This is demonstrated by the mathematics of the Influence Function 
(see Opdyke and Cavallo, 2012a, 2012b). 
 
Truncation of the severity mitigates, but does not eliminate this 
problem.  The EXCESSIVE SENSITIVITY of the capital estimate 
to HIGH PROBABILITY, LOW SEVERITY LOSSES is still very 
material under truncated severities. 
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III. Variability of Capital 
• These extreme capital responses to small, left-tail losses are not just mathematical curiosities: 

they are possibly the largest source of quarter-to-quarter instability of MLE-based capital 
requirements, because they are not as rare as “low frequency, high severity” losses.  The 
effects are still extreme even for losses within $4k of the lower threshold, losses that every 
bank has in its severity modeling loss event datasets. 
 
 
 
 
 
 
 
 
 
 
 
 

• All it takes is a couple of new losses near the threshold, or changes in the values of such 
existing losses, to induce dramatic variability and instability in MLE-based capital requirements 
from quarter to quarter. 

Severity Threshold Parameter
Dist. H Names Parm 1 Parm 2 RC EC RC EC RC EC
LogN $0 µ, σ 10.953 1.749 $19.0 $33.3 $1.3 $2.4 $0.4 $0.8
LogN $10,000 µ, σ 10.954 1.750 $2.6 $4.2 $2.0 $3.6 $1.5 $2.4
LogN $25,000 µ, σ 10.917 1.749 $2.6 $4.8 $2.3 $4.2 $2.0 $3.6
LogG $0 α, β 35.484 3.252 $590.9 $1,469.8 $14.1 $34.1 $3.6 $9.2
LogG $10,000 α, β 35.513 3.263 $24.1 $62.2 $18.0 $43.1 $13.2 $33.5
LogG $25,000 α, β 35.410 3.252 $26.4 $67.0 $22.8 $57.4 $19.2 $57.4
GPD $0 ξ, β 0.8713 57,584 $27.9 $92.2 $24.0 $79.5 $20.4 $67.8
GPD $10,000 ξ, β 0.8825 57,484 $31.2 $95.6 $26.4 $95.5 $24.0 $76.4
GPD $25,000 ξ, β 0.8798 57,340 $38.4 $133.8 $36.0 $133.7 $31.2 $95.5

Change in Capital ($mill)
H + $10 loss H + $2k loss H + $4k loss
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III. Variability of Capital 
Based on a Random Draw from LogNormal (µ=10.95, σ=1.75) where MLE   
 

$0 – no change in capital 

ˆ ˆ11.02,  1.59µ σ= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 
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III. Variability of Capital 

For MLE, a new loss of $10 
increases regulatory capital by over 
$20m, and economic capital by 
over $36m.  But a loss of about 
$250k increases capital by $0. 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 

$0 – no change in capital 

C
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l R

eq
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re
m
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ts

 

ˆ ˆ11.02,  1.59µ σ= =

LogNormal 
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III. Variability of Capital 

WHY?  Check the MLE IF, which we derived 
previously as: 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

( )
( )

( )( )2 2

ln
; , ln

2

x
IF x T xθ

µ
θ µ σ

σ

 −
 

= − − 
 
 

The IF for the σ term becomes HUGE when x → 0+, so required capital also is going 
to become HUGE as it is based directly on the HUGE parameter estimate for σ.  
Even though the IF indicates that the parameter estimate for µ decreases 
monotonically as x decreases, it does so at a much slower rate so the effect of σ will 
dominate the effect that x has on capital. 

$0 – no change in capital 

ˆ ˆ11.02,  1.59µ σ= =

LogNormal 
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III. Variability of Capital 
Based on a Random Draw from LogGamma (a=35.5, b=3.25) where MLE   ˆâ 35.47,  b 3.31= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 
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III. Variability of Capital 

For MLE, a new loss of $10 
increases regulatory capital by over 
$380m, and economic capital by 
over $930m.  But a loss of about 
$175k increases capital by $0. 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 

$0 – no change in capital 

C
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LogGamma 
ˆâ 35.47,  b 3.31= =
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III. Variability of Capital 

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

WHY?  Check the MLE IF, which we derived 
previously as: 

$0 – no change in capital ( ) ( )( ) ( ) ( )

( )

( ) ( )( ) ( ) ( ) ( )

( )

2

2 2

2 2

1ln ln ln ln

1

1 ln ln ln ln

1

a ab x digamma a x
b b b

atrigamma a
b b

ab x digamma a trigamma a x
b b

atrigamma a
b b

   + − − −      
   −    =

   + − − −      
  −    

( ); ,IF x Tθ θ =

Here, ln(x) in BOTH IF terms dominate the ln(ln(x)) terms, so ln(ln(x)) – ln(x), which 
attains a global maximum at x=exp(1), becomes a large negative number as x → 1+.  
However, for the LogGamma smaller b uniformly INCREASES the quantiles of the 
distribution, while smaller a DECREASES them. The b term dominates, however, 
because of the relative size of the constants in both numerators, so capital 
increases without bound as x → 1+. 
 

LogGamma 
ˆâ 35.47,  b 3.31= =
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

d. High-Probability, Low-Severity Loss Events  
(Yes, you read this right) 
 
 

MYTH: Low Probability, High Severity losses drive the excessive variability 
of the capital estimate under the loss distribution approach. 
 

REALITY: This is not true per se.  MOST of the excessive quarter-to-quarter 
variability in capital estimation is due to High-Probability, Low-
Severity Loss Events near the data collection threshold.  Low-
Probability, High-Severity losses ALSO contribute to excessive 
variability in the capital estimate, but they are so rare that they do 
not make up the lion’s share of quarter-to-quarter variability.  In 
other words, maximum losses (or close) will drive the capital 
estimate WHEN THEY HAPPEN, but they do not make it bounce 
around so much from quarter-to-quarter, often when risk profiles do 
not change at all! 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

e. “behavioral convexity” of VaR as a function of severity 
parameter estimates (presented in the next section on Inflation 
(Size) of Capital). 
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III. Variability of Capital 
iii. This EXCESSIVE VARIABILITY is a function of five things: 

f. Systemically Upward Capital Bias (inflation) due to an essential 
discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA). 
(presented in the next section on Inflation (Size) of Capital). 
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IV. Size of Capital 
Inflated/Large Size of the Operational Risk Capital Estimate 

i. The Inflated/Large Size of Estimated OpRisk Capital is a function of five 
things: 
a. the EXCESSIVELY high severity percentile that must be estimated 

based on the 99.9%tile of the Aggregate Loss Distribution 
b. All relevant severities are heavy-tailed 
c. Systematically Upward Capital Bias (inflation) due to “Behavioral 

Convexity” of VaR as a function of severity parameter estimates 
d. Both Low-Probability, High-Severity events, as well as SOME High- 

Probability, Low-Severity events 
e. Systemically Upward Capital Bias (inflation) due to an essential 

discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA) 
 

“old” 

“new” 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

a. the EXCESSIVELY high severity percentile that must be 
estimated based on the 99.9%tile of the Aggregate Loss Distribution 
 
As shown above, a 99.9%tile of the ALD corresponds to estimating 
a much higher (sometimes 99.999%tile+) of the severity distribution, 
which corresponds to an extremely large quantile ($ amount). 
 
Despite persistent efforts from the industry, this regulatory 
requirement has not changed in over a decade, and most expect 
that it will not change. 
 
Developing a systematic, robust method for accurately “scaling” this 
high severity quantile has proven very challenging, and this problem 
has not yet been solved. 
 
Other metrics, such as CVaR, whose use is debated for other risk 
types, would yield even HIGHER capital estimates in this setting, 
especially because Operational Risk deals with such heavy-tailed 
severity distributions.  
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

b. All relevant severities are Heavy-Tailed 
 
 
Severity distributions that are not at least fairly heavy-tailed are not 
going to pass regulatory muster. 
 
When estimating the same high %tiles, those of heavier-tailed 
severity distributions will have larger quantiles ($ amounts) 
compared to those of lighter-tailed distributions. 
 



 
© J.D. Opdyke 

33  
3/31/2015  

© J.D. Opdyke 

IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

c. Systematically Upward Capital Bias (inflation) due to Convexity of 
VaR as a function of severity parameter estimates 
 
Operational Risk Capital Estimated under the Loss Distribution 
Approach is systematically inflated (i.e. biased upwards).  This 
inflation is material much, if not most of the time, especially for 
larger financial institutions (see Opdyke, 2014; Ergashev et al., 
2014; RMA, 2013; and Opdyke and Cavallo, 2012a, 2012b). 
 
Unbiased severity parameter estimation does not change this result, 
and even robust severity parameter estimation does not 
substantially mitigate this result.  Simply put, the choice of estimator 
does not make much difference. 
 
Because this inflation can be extremely large in both absolute and 
relative terms (into the billions of dollars, and sometimes more than 
doubling the estimate over “true” capital), it also strongly contributes 
to the Excessive Variability of the Capital Estimate. 
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IV. Size of Capital 
( ) ( )ˆ ˆ =Capital Bias  0E g g Eβ β    − >        

( )ˆ ˆ Estimated Capitalg Cβ = =

( ) ( )1ˆ ˆ; = severity quantileg F pβ β−=

( )ˆE β β= β̂

( )ˆpdf β

( )( )ˆpdf g β

LOWCI HIGHCI

( )LOWg CI

( )HIGHg CI

( )ˆg E β 
  

( )ˆE g β 
  

Capital Bias 

“Behaviorally convex” for the extreme tail of OpRisk-relevant, 
skewed heavy-tailed severities. 

“Jensen’s 
inequality” 
first proved in 
1906. 

Graph based on Kennedy (1992), p.37. 
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IV. Size of Capital 
Table 1:  
RCE vs. LDA-MLE for Truncated LogNormal Severity (µ = 10.7, σ = 2.385, H=$10k)* 
[see Opdyke (2014) for complete results] 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $700 $847   $1,338 $1,678 

True Capital $670 $670 $1,267 $1,267 

Bias  
(Mean - True) $30 $177 $71 $411 

Bias % 4.5% 26.4% 5.6% 32.4% 

RMSE* $469 $665   $1,003 $1,521 

STDDev* $468 $641 $1,000 $1,464 
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IV. Size of Capital 
Table 2:  
RCE vs. LDA-MLE for GPD Severity (ξ = 0.875, θ = 47,500, H=$0k)*   
[see Opdyke (2014) for complete results] 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $396 $640 $1,016 $2,123 

True Capital $391 $391 $1,106 $1,106 

Bias  
(Mean - True) $5 $249 $24 $1,016 

Bias % 1.2% 63.7% 2.2% 91.9% 

RMSE* $466 $870 $1,594 $3,514 

STDDev* $466 $834 $1,594 $3,363 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

c. Systematically Upward Capital Bias (inflation) due to Convexity of 
VaR as a function of severity parameter estimates 
 

MYTH: If our severity parameter estimates are unbiased, our capital is 
unbiased. 
 

REALITY: This is DEFINITELY not true, and shows how extensive research 
into parameter estimation can be better directed toward 
UNBIASED CAPITAL ESTIMATION.  
 

MYTH: Choosing the right severity estimator will mitigate or eliminate this 
problem. 
 

REALITY: No widely used estimator can substantially mitigate this capital 
bias. 

 



 
© J.D. Opdyke 

38  
3/31/2015  

© J.D. Opdyke 

IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

d. Both Low-Probability, High-Severity events, as well as SOME 
High- Probability, Low-Severity events 
 
As described above, MOST of the excessive quarter-to-quarter 
variability in capital estimation is due to High-Probability, Low-
Severity Loss Events near the data collection threshold (DCT).  
These losses, even if only modestly close to the DCT, 
disproportionately and often dramatically increase the SIZE of 
estimated capital, as shown on the Influence Function slides above.  
This result is counterintuitive, but the math is irrefutable, so we must 
remain cognizant of this “blind spot” / weakness of the loss 
distribution approach framework (see below for one published 
method that directly and at least partially addresses this problem). 
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IV. Size of Capital 
Based on a Random Draw from LogGamma (a=35.5, b=3.25) where MLE   ˆâ 35.47,  b 3.31= =

N=250, λ = 25, regulatory α = 0.999, economic α = 0.9997 

$0 – no change in capital 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

d. Both Low-Probability, High-Severity events, as well as SOME 
High- Probability, Low-Severity events 
 
Of course, WHEN THEY HAPPEN, Low-Probability, High-Severity 
losses will drive the capital estimate.  This is obviously most true of 
maximum losses, which depending on the severity, can lead to the 
“one loss causes ruin” problem. 
 
But it is critical to note the relative frequency of HPLS vs. LPHS 
losses: the former can cause just as much damage, and can do so 
far more frequently.  So perhaps much of the hype about LPHS 
should be redirected towards HPLS losses! 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

d. Both Low-Probability, High-Severity events, as well as SOME 
High- Probability, Low-Severity events 
 
 

MYTH: Low Probability, High Severity losses drive the size of the capital 
estimate. 
 

REALITY: This is not true per se. High-Probability, Low-Severity loss events 
near the data collection threshold can cause just as much damage.  
AND THEY OCCUR FAR MORE OFTEN!  So perhaps from a 
resource-allocation perspective, these should be given more of the 
attention that has been directed towards extremely rare loss 
events, at least when capital is estimated under a Loss Distribution 
Approach framework.  
 
“Fixing” this counterintuitive weakness of the Loss Distribution 
Approach is one topic addressed in Opdyke (2014). 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

e. Systemically Upward Capital Bias (inflation) due to an essential 
discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA). 
 
 
Of the ten or so published methods for approximating the 99.9%tile 
of the Aggregate Loss Distribution, SLA is the most widely used and 
has the advantage of being a closed-form analytical approximation 
(in other words, it is a formula, not a time-consuming simulation). 
 
However, even when infinite mean severities are excluded from 
consideration (which is by no means the default choice), SLA can 
often generate systematically upward biased estimates due to an 
essential discontinuity in its equation (see below). 
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IV. Size of Capital 
• Under the Basel II/III AMA, estimated capital requirements are the Value-at-Risk (VaR) quantile corresponding to the 

99.9%Tile of the aggregate loss distribution, which is the convolution of the frequency and severity distributions.  This 
convolution typically has no closed form, but its VaR may be obtained in a number of ways, including extensive monte 
carlo simulations, fast Fourier transform, Panjer recursion (see Panjer (2006) and Embrechts and Frei (2009)), and 
Degen’s (2010) Single Loss Approximation.  All are approximations, with the first as the gold standard providing arbitrary 
precision, and SLA as the fastest and most computationally efficient.  SLA is implemented as below under three conditions 
(only a) is relevant for severities that cannot have infinite mean): 
 

1 11C Fα
α λµ

λ
− − ≈ − + 

 

1 11 11 1FC F c Fα ξ
α αλµ

λ λ
− − − −   ≈ − + −    

    

• When implementing the above it is important to note that the capital estimate diverges as               specifically, for a) 
                                             and for c)                                            .  Note that this divergence does not only occur for small 
deviations from             For example, for GPD, divergence can be noticeable in the range of                             Therefore, 
one must utilize a nonlinear interpolation or an alternative derivation of Degen’s formulae to avoid this obstacle.  All 
results relying on SLA herein utilize the former solution – i.e. “ISLA” (see Opdyke, 2014) and were all tested to be 
within 0.5% of extensive Monte Carlo results (e.g. 100 million years’ worth of Monte Carlo loss simulations). 
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       (the above assumes a Poisson-distributed frequency distribution and can be modified if this assumption does not hold) 
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IV. Size of Capital 
Figures A1-A4:  ISLA Correction for SLA Discontinuity at ξ=1 for GPD Severity (θ = 55,000) 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

e. Systemically Upward Capital Bias (inflation) due to an essential 
discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA). 
 
 
The capital inflation that can result from the discontinuity in Degen’s 
(2010) SLA can be very large in absolute terms (hundreds of 
millions of dollars). 
 
This also obviously affects capital variability, in some cases 
dramatically if the tail index is close to a value of one. 
 
The Interpolated Single Loss Approximation (ISLA) of Opdyke 
(2014) is a very straightforward “fix” that solves this problem without 
sacrificing the speed that is the greatest benefit of using SLA over 
other approaches. 
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IV. Size of Capital 
i. Inflated/Large Size of Estimated OpRisk Capital is a function of five things 

e. Systemically Upward Capital Bias (inflation) due to an essential 
discontinuity in the most commonly used quantile approximation: 
Degen’s (2010) Single Loss Approximation (SLA). 
 
 

MYTH: Degen’s (2010) Single-Loss Approximation provides an unbiased 
approximation of the high quantile of the Aggregate Loss 
Distribution. 
 

REALITY: This is not true when the tail index (of severities that CAN have 
infinite mean) approaches 1.0, in which case it is systematically 
biased upwards (i.e. capital is inflated, materially) due to a 
discontinuity in the formula.  Opdyke (2014) provides a “fix” to this 
issue with Interpolated SLA (ISLA). 
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V. Choice of Severity Estimator 
The Choice of the Severity Estimator, while important, CANNOT solve either of 
the two main challenges of estimating Operational Risk Capital Under the Loss 
Distribution Approach: Excessive Capital Variability and Inflated Capital 
 
i. Many different severity estimators have been brought to bear in this 

setting, including but not limited to:  
a. Maximum likelihood estimation (MLE; see Opdyke and Cavallo, 2012a,2012b) 
b. Penalized likelihood estimation (PLE; see Cope, 2011) 
c. Method of Moments (see Dutta and Perry, 2007) 
d. Generalized Method of Moments (see RMA, 2013) 
e. Probability Weighted Moments (PWM; see BIS, 2011) 
f. Bayesian Estimators (see Zhou et al., 2013) 
g. Extreme Value Theory-Peaks Over Threshold (EVT-POT; see Chavez-Demoulin et 

al., 2014) 
h. Quantile Distance Estimator (QD; see Ergashev, 2008) 
i. Optimal Bias-Robust Estimator (OBRE; see Opdyke and Cavallo, 2012a) 
j. Cramer von Mises Estimator (CvM, not to be confused with the goodness-of-fit 

statistic of the same name; see Opdyke and Cavallo, 2012a) 
k. Generalized Median Estimator (see Serfling, 2002; Wilde and Grimshaw, 2013) 
l. Probability Integral Transform statistic (PITS; see Finkelsteign et al., 2006)  
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V. Choice of Severity Estimator 
The Choice of the Severity Estimator, while important, CANNOT solve either of 
the two main challenges of estimating Operational Risk Capital Under the Loss 
Distribution Approach: Excessive Capital Variability and Inflated Capital 
 
ii. None of the severity parameter estimators can effectively address 

the issue of inflated capital, because unbiased parameter estimation is 
NOT the issue here: AFTER severity parameters are estimated, VaR (the 
quantile of the 99.9%tile) of the Aggregate Loss Distribution is obtained, 
and VaR is a “behaviorally convex” function* of the severity parameters, 
as shown previously. 
 
So no matter how “on target” the severity parameter – it could be a perfect 
bullseye on average! – capital STILL will be inflated.  And multiple papers 
(see Opdyke and Cavallo, 2012a; and Joris, 2013) have shown that 
increasing parameter robustness significantly (say, via the use of  OBRE 
instead of MLE) has relatively little impact on this capital inflation.  

 
 
 
 

*NOTE: Preliminary research suggests that even when the multivariate VaR surface (as a function of 
multiple severity parameters) is not strictly convex, it is “behaviorally convex” so that the net effect 
empirically, when severity parameters vary as dictated by their dependence structure, is that Jensen’s 
Inequality holds for capital (VaR) as a function of the vector of severity parameters. 
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V. Choice of Severity Estimator 
( ) ( )ˆ ˆ =Capital Bias  0E g g Eβ β    − >        
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Capital Bias 

“Behaviorally convex” for the extreme tail of OpRisk-relevant, 
skewed heavy-tailed severities. 

“Jensen’s 
inequality” 
first proved in 
1906. 

Graph based on Kennedy (1992), p.37. 
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V. Choice of Severity Estimator 
The Choice of the Severity Estimator, while important, CANNOT solve either of 
the two main challenges of estimating Operational Risk Capital Under the Loss 
Distribution Approach: Excessive Capital Variability and Inflated Capital 
 
iii. Also, none of the severity parameter estimators can effectively 

address the issue of excessive capital variability, simply because the 
VaR (quantile) of the ALD being estimated is so high (and this translates 
into an even HIGHER quantile of the severity distribution). 
 
 
Intuitively, recall the 2x6: the board is simply too long for there NOT to be 
an enormous “wobble” when we shake it.  In other words, when we 
sample from the data generating mechanism (shake the board), the far 
end of the board is just going to bounce around too much to get a precise 
marking on it: it’ll change dramatically (vary a lot) every time we draw a 
different sample!  This will hold true even when we have tens of 
thousands of operational risk loss events, and even when those losses 
are perfectly i.i.d., because the %tile we are trying to estimate is so high.  
This is what many statisticians would call an ill-posed problem. 
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VI. EVT Models 
Reliance on Extreme Value Theory (EVT) per se does not solve either of the 
two main challenges, so the use of EVT models per se will not help under a 
loss distribution approach framework. 
 
i. EVT Simplified:  Taking EVT-POT (Peaks-over-Threshold), the piece of 

EVT relevant to this setting holds that for i.i.d. loss event data, beyond a 
certain high threshold the distribution of the severity tail converges 
asymptotically (as sample size approaches infinity) to a Generalized 
Pareto Distribution (GPD).  This is true of all severities relevant to this 
setting.  The quality of this convergence increases/decreases as the 
threshold is increased/decreased. 
 

ii. An entire literature exists on estimators of the tail index of the GPD, the 
most common and established being the Hill (1975) and Pickands (1975) 
estimators (numerous modifications of each exist, some of which 
eliminate finite sample bias). 
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VI. EVT Models 
Reliance on Extreme Value Theory (EVT) per se does not solve either of the 
two main challenges, so the use of EVT models per se will not help under a 
loss distribution approach framework. 
 
iii. The above is an important theoretical result, but its practical application 

remains challenging for a number of reasons, the foremost being that the 
higher the threshold and the better the GPD approximation, the 
fewer the observations we have to get a good estimate of the tail 
index (i.e. the key severity distribution parameter)!  This is a difficult 
catch 22. 
 

iv. This is a challenging and open statistical problem for which the literature 
provides many stylized and partial solutions, among them a recent one 
from Miranda (2014) in the Journal of Operational Risk.  However, even if 
a solution to this problem was widely accepted and stood the test of time 
(and none has), this does not solve the 2 challenges of excessive capital 
variability and inflated capital size.  EVT models do not appear to address 
this any better than severity models that make use of the entire severity 
distribution of loss events, rather than just the tail. 
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VII. What’s an OpRisk Modeler  
       to Do?   
• There are numerous nontrivial challenges to estimating capital under a 

loss distribution approach with reasonable accuracy, reasonable precision 
(i.e. reasonably small variability), and reasonable robustness (i.e. robust 
under violations of assumptions like i.i.d. data, which are widely 
recognized as being routinely violated in this setting).  Only SOME of 
these are listed above. 

• So what are operational risk modelers to do? 
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VII. What’s an OpRisk Modeler  
       to Do?   
• First, we cannot tackle all the abovementioned issues if we do not 

correctly and objectively define them and face them head-on, even if some 
appear insurmountable and/or challenge current assumptions about widely 
used frameworks (e.g. High-Probability, Low Severity losses near the 
threshold can dramatically INCREASE capital!).  This is risky, and easier 
said than done. 

• Secondly, we must design solutions that focus on these now correctly and 
objectively defined and material problems.  This, too, is risky (no low-
hanging research fruit), and easier said than done.  For example, it is 
easier to make marginal contributions to the already extensive literature on 
severity parameter estimation than it is to tackle the very hard problem of 
convexity in VaR as a function of the severity parameters. 

• Only when we accurately and honestly define the problems, and then 
focus on them by directing resources toward what is admittedly higher-risk 
applied research (i.e. some of which may be unsolvable or at least non-
monetizable), will we have a reasonable chance of making real headway. 
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VII. One Published Method 
Only one published method directly addresses both excessive capital 
variability and inflated capital size under the loss distribution approach: the 
Reduced-Bias Capital Estimator (RCE) of Opdyke (2014). 

RCE is an estimator of CAPITAL, not of severity parameters, under the loss 
distribution approach.  RCE 

i. Nearly eliminates capital inflation due to VaR’s “behavioral convexity” as a 
function of severity parameters. 

ii. Dramatically mitigates excessive capital variability (by any measure of 
spread), very often with decreases of over 50%. 

iii. Mitigates the counterintuitive increases in capital that result from High-
Probability, Low-Severity losses near the data collection threshold. 

Opdyke (2014) also presents an accurate method for approximating the high 
quantile of the Aggregate Loss Distribution – ISLA – that circumvents the 
capital-biasing discontinuity of Degen’s (2010) SLA … WITHOUT losing the 
computational speed advantage of using a closed-form analytical formula. 
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VII. One Published Method 
Opdyke’s (2014) RCE does not directly “solve” capital variability caused strictly 
by the extreme size of the quantile that must be estimated, but it does mitigate 
variability in the capital estimate by mitigating the effects of VaR’s “behavioral 
convexity,” which are considerable as shown below in Tables 1 and 2. 
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VII. One Published Method 
Table 1:  
RCE vs. LDA-MLE for Truncated LogNormal Severity (µ = 10.7, σ = 2.385, H=$10k)* 
[see Opdyke (2014) for complete results] 

 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $700 $847   $1,338 $1,678 

True Capital $670 $670 $1,267 $1,267 

Bias  
(Mean - True) $30 $177 $71 $411 

Bias % 4.5% 26.4% 5.6% 32.4% 

RMSE* $469 $665   $1,003 $1,521 

STDDev* $468 $641 $1,000 $1,464 
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VII. One Published Method 
Table 2:  
RCE vs. LDA-MLE for GPD Severity (ξ = 0.875, θ = 47,500, H=$0k)*   
[see Opdyke (2014) for complete results] 

(millions) Regulatory Capital** Economic Capital** 

RCE LDA-MLE RCE LDA-MLE 

Mean* $396 $640 $1,016 $2,123 

True Capital $391 $391 $1,106 $1,106 

Bias  
(Mean - True) $5 $249 $24 $1,016 

Bias % 1.2% 63.7% 2.2% 91.9% 

RMSE* $466 $870 $1,594 $3,514 

STDDev* $466 $834 $1,594 $3,363 
 

                           * 1,000 Simulations, n ≈ 250                                                                        ** λ = 25; α = 0.999 RC; α = 0.9997 EC 
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VII. One Published Method 
Other benefits of RCE include: 
 
a. RCE is consistent with the loss distribution approach framework (even with new 

guidance (6/30/14) encouraging new methods, arguably the smaller the divergence from 
widespread industry practice, the greater the chances of regulatory approval). 

b. RCE works across a very wide range of very different severities. 
c. RCE works when severity distributions are truncated to account for data collection 

thresholds. 
d. RCE works even under infinite mean (or close, which is relevant for any simulation-

based method even if infinite means are excluded). 
e. RCE is not computationally intensive (it can be implemented on a desktop computer). 
f. RCE’s range of application encompasses all commonly used estimators of severity (and 

frequency) 
g. RCE works regardless of the method used to approximate VaR of the aggregate loss 

distribution. 
h. RCE is easily understood and implemented using any widely available statistical 

software. 
i. RCE provides unambiguous, material improvements over the most widely used 

implementations of the loss distribution approach (e.g. MLE, and most other estimators) 
on all three key criteria – capital accuracy, capital precision, and capital robustness. 
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VIII. Summary and Conclusions 
• The loss distribution approach under Basel II’s AMA at first blush seems like 

a relatively straightforward actuarial approach to operational risk capital 
estimation.  But it quickly becomes very complex under the empirical, 
methodological, and regulatory constraints imposed in this setting. 

• These constraints usually interact in nontrivial and complicated ways. 
• OpRisk Capital Estimation Research to date has not directly focused on its 

2 main challenges: Excessive Capital Variability, & Inflated Capital Size. 
• The only way to either solve these problems, circumvent them, or prove that 

some aspects of them cannot be solved, is to first recognize these as the 
OpRisk Capital’s biggest, most material problems; and then to focus our 
analytical lenses directly on them rather than on marginal, related issues 
that are not really driving capital estimation (e.g. severity estimation). 

• Opdyke (2014) is the only published paper that directly addresses both 
excessive capital variability and inflated capital size under the loss 
distribution approach with the Reduced-Bias Capital Estimator (RCE). 

• Further research focused directly on these two challenges is absolutely 
necessary if the LDA is to be at all useful in this setting, and if large, 
regulated financial institutions are to be able to generate OpRisk Capital 
Estimates that are reasonably accurate, precise, and robust. 
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